Micología
Líneas de investigación
Content with Investigacion .
Micología
null
Estudio de la relación exposición y respuesta en el tratamiento con antifúngicos
Resistance mechanisms of Aspergillus fumigatus to antifungals
Aspergillus fumigatus is a universally distributed opportunistic fungal pathogen with a significant global incidence and extremely high mortality. The widespread and extensive use of azole antifungals has led to the emergence of A. fumigatus azole resistant, resulting in serious consequences for patients infected with these isolates, who are left with limited therapeutic options.
Initially, the emergence of resistant strains was very sporadic and showed point mutations in key areas of the Cyp51A enzyme (G54, G138, F219, M220, G448S) in strains isolated from patients undergoing long-term treatment with azoles. This clinical pathway is due to the selective pressure that azoles exert on A. fumigatus within the patient. However, since 2014, resistance has grown significantly, and almost all azole-resistant A. fumigatus strains have a combined mechanism of modifications in the promoter and the coding portion of cyp51A (TR34/L98H or TR46/Y121F/T289A). Both resistance mechanisms are frequently detected in strains from patients who have never been exposed to antifungal therapy. In these cases, the involvement of an environmental route is raised, in which the unintentional exposure of A. fumigatus to DMIs (imidazole and triazole) in the field would be favoring the resistance emergence.
Origin and Evolution of A. fumigatus Resistance to Antifungals
Nowadays, the isolation of A. fumigatus strains resistant to antifungals is an increasing global emergence. The continuous exposure of A. fumigatus to environmental fungicides, used for crop protection against other fungal species that cause agricultural damage, is believed to be selecting multi drug resistant strains. The main azole resistance mechanisms in A. fumigatus are strains with modifications of the azole target (cyp51A gene), mainly the TR34/L98H, followed by TR46/Y121F/A289T. Both types of mechanisms are responsible for panazole resistance and cross resistance to DMIs used for crop protection (imidazoles and triazoles). More recently, resistance to several fungicide classes such as, Bencimidazoles (MBC), Estrobilurinas (QoIs), sucinato deshidrogenase inhibitors (SDHIs) and Dicarboximides, has also been acknowledged.
Genomic characterization (NGS) of strains from both clinical and environmental sources allows linking genomic differences with the acquisition of resistance to different fungicides. Adding data on susceptibility to non-azole antifungals provides a more precise picture of the phylogenetic relationships among strains, as distinct subclades are formed in which strains multi-resistant to non-azole antifungals grouped with azole-resistant strains with TRs resistance mechanisms. This formation of specific clades with strains that differ in geographic origin and year of isolation suggests the existence of a common link, an evolutionary origin according to which the strains have developed under similar circumstances that converge in a series of multi-resistance mechanisms to fungicides from different families. The resistance of A. fumigatus to non-azole fungicides, that are exclusively used in the environment, confirms that the strains with TRs resistance mechanisms are selected and developed in the environment where they are exposed to the selective pressure of multiple fungicides.
Tolerance and Persistence to Azole Antifungals in Aspergillus fumigatus
Tolerance and persistence are two phenomena by which pathogenic organisms can survive the microbicidal action of antimicrobials that should kill them over an extended period. In our laboratory, we investigate the ability of certain A. fumigatus isolates to exhibit tolerance and persistence to azoles, which are the first-line antifungal treatment for aspergillosis infections.
We are developing methodologies to detect and study tolerance and persistence, both in the laboratory and in clinical diagnosis. Using these methods, we are exploring the underlying molecular and genomic mechanisms that enable these phenomena. In addition, we are investigating the potential relevance of tolerance and persistence in the efficacy of antifungal treatment.
Differential Modulation of Persulfidation in the Fungus and Host as a Novel Antifungal Strategy
Persulfidation is a post-translational modification in which an activated sulfur group (S₂-), through the action of an enzyme, performs a specific nucleophilic attack on thiol (-SH) groups of cysteine residues in target proteins, forming a persulfide group (-SSH). This modification has been shown to modulate the intrinsic activity of proteins, playing a crucial role in various cellular mechanisms and physiological functions.
In our previous research, we demonstrated that correct levels of persulfidation are important both for A. fumigatus virulence and for orchestrating an adequate immune response in the host. Based on this, our research explores the hypothesis that differential modulation of persulfidation could constitute a novel antifungal treatment strategy.
We are investigating the ability of compounds to inhibit fungal enzymes responsible for persulfidation, aiming to reduce persulfidation levels and thereby decrease A. fumigatus virulence. Additionally, we are studying the use of sulfur donors as a potential means to enhance persulfidation in pulmonary host cells, with the goal of strengthening the immune response.
Evolution of Cross-Resistance to the New Antifungals Olorofim and Manogepix
Azole resistance is already present worldwide. Studies have shown that the most common resistance mechanisms—tandem repeats in the promoter of the gene encoding the azole target—have developed in agricultural settings due to the indiscriminate use of pesticides from the same family as clinical azoles.
Currently, two new clinical antifungals with novel molecular mechanisms of action have been introduced: olorofim and manogepix. However, analogous compounds with the same mechanism of action, ipflufenoquin and aminopyrifen, have also been developed for use as pesticides. This situation puts us at risk of repeating the same mistake made with azoles.
In this international collaborative project, we study the evolution of resistance and cross-resistance to these clinical and environmental antifungals. Our goal is to design strategies to minimize the emergence of resistance in the environment and develop early detection methods for antifungal resistance.
Susceptibilidad del huésped a las infecciones fúngicas invasoras
Se estima que más de un millón y medio de personas mueren al año en el mundo debido a una enfermedad fúngica invasora (EFI). Los tratamientos con inmunosupresores, terapias con corticoides, trasplantes de células hematopoyéticas y órgano sólido así como tratamientos quimioterapéuticos contra el cáncer han favorecido el aumento de estas infecciones fúngicas. El género Aspergillus es la principal causa de EFI por hongos filamentosos, siendo A. fumigatus la especie principalmente aislada en la mayoría de los casos y más frecuentemente asociada a Aspergilosis Invasora.
Muchas de estas infecciones están infra-diagnosticadas debido, tanto a la falta de sospecha clínica como a las limitaciones diagnósticas. Esta línea de investigación tiene como principal objetivo mejorar el pronóstico de la infecciones en pacientes con riesgo de desarrollar infecciones invasoras por hongos. Para ello se estudian marcadores del individuo (denominados biomarcadores del hospedador) que puedan ser detectados de forme temprana en muestras de pacientes en riesgo y que nos permita estratificar a los mismos en función de la susceptibilidad a desarrollar una infección invasora por hongos. Además, estudios realizados en los últimos años muestran que el fondo genético del hospedador está asociado con la predisposición al desarrollo de este tipo de enfermedades. En concreto se han identificado polimorfismos genéticos de nucleótido simple (“Single Nucleotide Polymorphism”- SNP) en genes que codifican para componentes celulares que interaccionan con estructuras fúngicas y/o que están involucradas en la respuesta inmune del huésped frente a agentes infecciosos como Aspergillus. En este sentido se han estandarizado y aplicado herramientas para la detección de SNPs en humanos de genes diana asociados concretamente con la susceptibilidad a la Aspergilosis Invasora.
Estudio de los mecanismos de virulencia en Aspergillus fumigatus
En paralelo al estudio de la respuesta del hospedador se sigue una línea cuyo objetivo es caracterizar mecanismos de virulencia en A. fumigatus. Uno de los principales mecanismos por los que A. fumigatus es capaz de causar enfermedad en humanos es su capacidad de adaptarse a las condiciones ambientales del hospedador. Entre las moléculas y los genes que se han relacionado con la virulencia de este hongo se encuentran componentes de la pared celular, genes y moléculas relacionadas con la evasión de la respuesta inmune, sistemas de detoxificación de los compuestos derivados del oxígeno, la producción de toxinas, la obtención de nutrientes como hierro, fósforo, nitrógeno y la adaptación a pH y temperatura del hospedador. Estos estudios permiten profundizar en el conocimiento sobre la patogenicidad de este hongo e identificar nuevas dianas terapéuticas
Nuevos antifúngicos y aspergilosis crónicas.
Epidemiología, resistencia y actividad de nuevos antifúngicos
El conocimiento de la epidemiología y la tasa de resistencia a los antifúngicos es esencial para un manejo adecuado de los pacientes y una estrategia de detección y diagnostico apropiada. La resistencia a los antimicrobianos es hoy una de las mayores amenazas para la salud mundial siendo el desarrollo y comercialización de nuevos compuestos una de las prioridades del sector de la salud. Se han realizado en colaboración con centros del Sistema Nacional de Salud varios estudios poblacionales, con el fin de conocer la epidemiología de los hongos filamentosos en España y la tasa de resistencia a los antifúngicos. Se ha encontrado que más de un 10% de las infecciones por hongos filamentosos están producidas por especies crípticas que suelen ser más resistentes a los antifúngicos. En los últimos años han aparecido varios compuestos con capacidad antifúngica que están en diferentes fases de desarrollo, en nuestro grupo se ensayan estos nuevos compuestos frente a los principales géneros de especies patógenas, incluyendo las especies crípticas multiresistentes.
Aspergilosis Pulmonar Crónica y Aspergilosis Broncopulmonar alérgica
Estas enfermedades ocurren generalmente en personas inmunocompetentes. La incidencia de estas enfermedades es prácticamente desconocida. La ausencia de un diagnóstico apropiado y del tratamiento óptimo complica el manejo de estos pacientes. Varios estudios han documentado la presencia de cepas multiresistentes en estos pacientes, debido a tratamiento prolongados. En esta línea se está trabajando en mejorar el algoritmo diagnóstico de estas enfermedades, así como analizar la epidemiología de las especies aisladas en estas infecciones y la influencia de cambios en el micobioma pulmonar y ambiental.
Enfermedades fúngicas y Salud global
Muchos países de renta media y baja se encuentran en zonas de alta incidencia de hongos, sin embargo, tienen menos herramientas y capacidad diagnóstica para manejarlas. Con el fin de conocer la incidencia de las infecciones oportunistas por hongos y disminuir la muerte asociada a las mismas en pacientes que viven con VIH en Guatemala y en colaboración con el Fondo de acción Global para las infecciones fúngicas (GAFFI), se ha desarrollado una red de unidades de atención integral al sida e implementado un laboratorio central de diagnóstico, que hace de referencia para el diagnóstico en varias infecciones oportunistas. Se ha hecho un estudio de cohortes incluyendo a más de 2500 pacientes HIV+ con un seguimiento de un año. Se han tamizado las principales infecciones fúngicas en este grupo de pacientes permitiendo el acceso al diagnóstico y al tratamiento de las mismas en la mayor parte del país y consiguiendo una disminución de mortalidad en un año del 7%.
Mechanisms of pathogenic fungal host adaptation: Morphogenesis in Cryptococcus neoformans
One of the main mechanisms by which fungi are able to cause disease in humans is their ability to evade the immune response and adapt to the environmental conditions found in the host. In this regard, one of the yeasts that has the greatest ability to adapt to the host is Cryptococcus neoformans. This fungus is found in the environment, and is acquired by inhalation, although the most typical picture is meningitis in immunocompromised patients, mainly HIV+. The main phenotypic characteristic is the presence of a polysaccharide capsule surrounding the cell, which is considered a virulence factor. In addition, C. neoformans is able to increase cell size significantly forming “titan” cells, which can reach a diameter of more than 70 microns. In the laboratory, we are interested in the role of these titan cells in the virulence of C. neoformans. Recently, we have described in vitro media in which C. neoformans forms pseudo-titan cells, which has allowed us to identify new factors and pathways involved in this process.
Mechanisms of action of antifungals
In parallel, we have a line whose main objective is to characterize the mechanisms of action of antifungals. Specifically, we have focused our work on the effect of Amphotericin B (AmB). For decades it has been thought that this antifungal causes cell death after binding to ergosterol and pore formation. Our results indicate that this antifungal also induces strong oxidative stress in the cell, which occurs before cell integrity is lost. Furthermore, we have shown that oxidative stress is necessary for the fungicidal action of AmB. These results open the door to design new strategies to improve its efficiency in patients.
New therapeutic strategies
Work with AmB has led to research aimed at improving antifungal therapies. In particular, we have used the strategy of “off-patent” drug repositioning to search for new activities. Using this approach, we have identified several drugs that increase the effectiveness of AmB against major pathogenic yeasts, such as the antibiotic erythromycin. This approach has allowed us to identify drugs with antifungal activity against emerging pathogens, such as Candida auris.
El diagnóstico de la infección fúngica invasora (IFI) es complicado y con frecuencia se retrasa ya que en muchas ocasiones a la falta de sospecha clínica se le suma la falta de herramientas diagnósticas eficaces. Esta línea de investigación se inició en el año 2003, primero liderada por el Dr. Manuel Cuenca-Estrella y posteriormente por la Dra. María José Buitrago con el objetivo general de desarrollar nuevas herramientas, basadas en la PCR en tiempo Real, para un diagnóstico rápido de IFI. Los objetivos concretos que se han ido alcanzando a lo largo de estos años han sido los siguientes:
Detección precoz de hongos causantes de infecciones fúngicas oportunistas más frecuentes en pacientes inmunodeprimidos (Aspergilosis y Candidiasis invasoras)
Se han desarrollado y validado técnicas de PCR en tiempo Real en formato multiplex para el cribado de pacientes en riesgo de padecer estas infecciones, así como para el diagnóstico en pacientes con sospecha.
Detección de IFIs causadas por hongos emergentes (Escedosporiosis, Fusariosis etc...)
El aumento de especies raras o poco frecuentes causantes de IFI hizo necesario el desarrollo de técnicas para su detección
Detección “panfúngica”
Para aquellos casos en los que no exista evidencia clara del hongo causante de la infección se han desarrollado técnicas basadas en PCR en tiempo Real.
Mejora del diagnóstico y la identificación de los hongos causantes de micosis importadas (micosis endémicas)
Debido al aumento de la inmigración y los viajes a lugares exóticos en los últimos años se ha producido un incremento de las micosis importadas en España, en concreto de aquellas causadas por hongos endémicos de determinadas regiones, los cuales son además patógenos primarios. Este objetivo es relevante en el contexto de una región no-endémica ya que existe falta de experiencia en el manejo de estas infecciones y las técnicas diagnósticas disponibles son muy escasas. A lo largo de estos años se han desarrollado y validado distintas técnicas para el diagnóstico rápido de estas micosis y se han realizado diferentes trabajos encaminados a un mejor conocimiento de los hongos que las causan.
Las técnicas desarrolladas a lo largo de estos años se han incorporado a la Cartera de Servicios del Centro Nacional de Microbiología para ofrecerlas al Sistema Nacional de Salud. Además, algunas de ellas se han patentado.
Publicaciones destacadas
Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals
2. Trevijano-Contador N, de Oliveira HC, García-Rodas R, Rossi SA, Llorente I, Zaballos Á, Janbon G, Ariño J, Zaragoza Ó. Cryptococcus neoformans can form titan-like cells in vitro in response to multiple signals. PLoS Pathog. 2018 May 18;14(5):e1007007.
PUBMED DOIReclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts
4. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-López A, Boekhout T. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol.
PUBMED DOIMolecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study).
5. Alastruey-Izquierdo A, Alcazar-Fuoli L, Rivero-Menéndez O, Ayats J, Castro C, García-Rodríguez J, Goterris-Bonet L, Ibáñez-Martínez E, Linares-Sicilia MJ, Martin-Gomez MT, Martín-Mazuelos E, Pelaez T, Peman J, Rezusta A, Rojo S, Tejero R, Anza DV, Viñuelas J, Zapico MS, Cuenca-Estrella M; the FILPOP2 Project from GEMICOMED (SEIMC) and REIPI. Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrob Agents Chemother. 2018 Aug 27;62(9).
PUBMED DOIEvaluation of Bronchoalveolar Lavage Fluid Cytokines as Biomarkers for Invasive Pulmonary Aspergillosis in At-Risk Patients
6. Gonçalves SM, Lagrou K, Rodrigues CS, Campos CF, Bernal-Martínez L, Rodrigues F, Silvestre R, Alcazar-Fuoli L, Maertens JA, Cunha C, Carvalho A. Evaluation of Bronchoalveolar Lavage Fluid Cytokines as Biomarkers for Invasive Pulmonary Aspergillosis in At-Risk Patients. Front Microbiol. 2017 Nov 29;8:2362.
PUBMED DOIPolymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: Results from the AspBIOmics Consortium
7. Lupiañez CB, Canet LM, Carvalho A, Alcazar-Fuoli L, Springer J, Lackner M, Segura-Catena J, Comino A, Olmedo C, Ríos R, Fernández-Montoya A, Cuenca-Estrella M, Solano C, López-Nevot MÁ, Cunha C, Oliveira-Coelho A, Villaescusa T, Fianchi L, Aguado JM, Pagano L, López-Fernández E, Potenza L, Luppi M, Lass-Flörl C, Loeffler J, Einsele H, Vazquez L; PCRAGA Study Group, Jurado M, Sainz J. Polymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: Results from the AspBIOmics Consortium. Infect Immun. 2015 Dec 14;84(3):643-57.
PUBMED DOICell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host.
9. Mesa-Arango AC, Rueda C, Román E, Quintin J, Terrón MC, Luque D, Netea MG, Pla J and Zaragoza O. Cell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host. Antimicrob. Agents Chemother. 2016. 60(4):2326-35.
PUBMED DOIComparison of two highly discriminatory typing methods to analyze Aspergillus fumigatus azole resistance
Garcia-Rubio R, Escribano P, Gomez A, Guinea J, and Mellado E. Comparison of two highly discriminatory typing methods to analyze Aspergillus fumigatus azole resistance. Frontiers in Microbiology 2018. Jul 20;9:1626.
PUBMED DOIEvaluation of the possible influence of trailing and paradoxical effects on the clinical outcome of patients with candidemia.
Rueda C, Puig-Asensio M, Guinea J, Almirante B, Cuenca-Estrella M, Zaragoza O. Evaluation of the possible influence of trailing and paradoxical effects on the clinical outcome of patients with candidemia. CANDIPOP Project from GEIH-GEMICOMED (SEIMC) and REIPI. Clin Microbiol Infect. 2017 Jan; 23(1):49.e1-49.e8.
PUBMED DOIDevelopment and Validation of a High-Resolution Melting Assay To Detect Azole Resistance in Aspergillus fumigatus.
Bernal-Martínez L, Gil H, Rivero-Menéndez O, Gago S, Cuenca-Estrella M, Mellado E, Alastruey-Izquierdo A. Development and Validation of a High-Resolution Melting Assay To Detect Azole Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2017 Nov 22;61(12). pii: e01083-17.
PUBMED DOIContent with Investigacion .
-
-
Jorge Amich Elías
Tenure Scientist
ORCID code: 0000-0002-8987-5115
Doctor en Microbiología y Genética Molecular, realizó su tesis doctoral (2010) en la Universidad de Salamanca bajo la dirección del Dr. José Antonio Calera Abad. Realizó estancias postdoctorales en la Universidad de Würzburg (Alemania) bajo la supervisión del Prof. Sven Krappmann (2011-2012) y en el Hospital Clínico de Würzbug bajo la supervisión del Prof. Andreas Beilhack (2013-2015). Entre 2016 y 2021 fue Investigador Principal en el Manchester Fungal Infection Group (MFIG, Universidad de Manchester, Reino Unido) financiado con un MRC Career Development Award. En 2022 me he incorporado al Centro Nacional de Microbiología del ISCIII gracias a un contrato de Atracción de Talento de la Comunidad de Madrid. En 2024, pasó a ser Científico Titular de los OPIs en el CNM.
-
Victor Arribas Antón
Contratado posdoctoral
ORCID code: 0000-0002-6079-8988
PhD in Functional Biology and Genomics from the University of Salamanca (2019) under the supervision of Dr. Pilar Pérez and Dr. Pedro Coll. He completed a short-term predoctoral fellowship at the University of Glasgow in Glasgow Polyomics (United Kingdom). In 2020, he obtained a Torres Quevedo postdoctoral fellowship to support the hiring of early-career PhD researchers in industry, focusing on the production of recombinant antibodies with therapeutic applications. In 2022, he received a Margarita Salas postdoctoral fellowship to carry out a long-term research stay at the Complutense University of Madrid, where he worked on identifying novel antifungal targets for C. albicans using proteomics. In 2025, he joined ISCIII at National Center for Microbiology under a contract funded by a European project.
-
-
Ana Alastruey Izquierdo
Research Scientist
ORCID code: 0000-0001-8651-4405
Doctor in microbiology from the Complutense University of Madrid and Master in Bioinformatics and computational biology from the same university. He completed his doctoral thesis at the ISCIII under the supervision of Dr. Juan Luis Rodríguez Tudela in molecular identification of human pathogenic fungi. He carried out research stays in Holland (Fungal Biodiversity Center, CBS-Knaw, Utrecht) and Austria (Austrian Institute of Technology). In 2010-2011 he joined Dr. David Perlin's group as a postdoctoral fellow at the Public Health Research Institute of Rutgers University in the United States working on antifungal resistance. In 2012 and 2013 he carried out research stays at the European Bioinformatics Institute (EMBL-EBI). Since 2014 he has been a Senior Scientist at the ISCIII.
-
Laura Alcázar Fuoli
Research Scientist
Graduated in Biochemistry from the Autonomous University of Madrid and PhD in Biology from the Complutense University of Madrid in 2006. She completed her doctoral thesis at the National Center of Microbiology (CNM) under the direction of Dr. Emilia Mellado, in the study of the synthesis of Ergosterol in Aspergillus fumigatus. In 2012 Laura joined the reference laboratory in mycology with a researcher contract for the “Miguel Servet” program after having worked for three years as an associate researcher at Imperial College London. During that period his research focused on host adaptation mechanisms and virulence factors of A. fumigatus. In 2014 he obtained the position of Senior Scientist of Public Research Organizations carrying out his research work at the CNM.
-
Khalil Ashraph
Predoctoral
-
Leticia Bernal Martínez
Staff Scientist
ORCID code: 0000-0002-1694-5522
Leticia Bernal Martínez obtaned her PhD at the CNM, ISCIII and she is currently staff at the Mycology Laboratory. She has more than fifteen years of experience in Molecular Mycology. His research has focused on the development of new diagnostic techniques for invasive fungal infection.
-
Beatriz Bellido Samaniego
Higher Technician Facultative Specialist
-
Óscar Zaragoza Hernández
Research Professor
ORCID code: 0000-0002-1581-0845
Dr. Oscar Zaragoza graduated in Biology from the Complutense University of Madrid in 1995 and obtained his PhD from the Autonomous University of Madrid. He completed his doctoral thesis (2000) at the CSIC under the direction of Dr. Juana María Gancedo on the topic of glucose catabolite repression in Saccharomyces cerevisiae. During this period, he was also tutored by Dr. Carlos Gancedo in collaborative projects, that allowed him to start working with the pathogenic yeast Candida albicans.
After a brief postdoctoral stay in the same laboratory, in 2001, he joined the laboratory of Dr. Arturo Casadevall (Albert Einstein College of Medicine, New York), where he specialized in research into virulence mechanisms of pathogenic fungi, mainly Cryptococcus neoformans. In 2006 he joined the National Center for Microbiology of the ISCIII thanks to a “Ramón y Cajal” contract and he became staff scientist in 2009. Currently, he occupies the rank of Research Professor of the OPIs.
During his career, he has published more than 140 articles, 4 book chapters and a popular book ("Microscopic fungi: Friends or Enemies?"). He has obtained public and private projects, and participates as CoIP of a CIBERINFEC group. He has supervised seven doctoral theses, and numerous master's thesis projects.
-
-
Laura Alguacil Cuéllar
PhD student (pFIS)
ORCID code: 0000-0002-7362-0214
Graduated in Biology from the Rey Juan Carlos University, she completed the Master's Degree in Microbiology and Parasitology: Research and Development from the Complutense University of Madrid (UCM) and is an expert in Research Methodology and Evidence-Based Clinical Practice from the Miguel de Cervantes European University. For two years he was a research assistant in the Microbiology department of the Faculty of Pharmacy at the UCM thanks to a CM Young Employment Scholarship. In 2023 he joined ISCIII with a pFIS predoctoral contract under the direction of Dr. Ana Alastruey Izquierdo.
-
-
Alba Torres Cano
PhD student (FPI contract)
ORCID code: 0009-0008-3151-1803
Alba Torres Cano has a degree in Health Biology from the University of Alcalá de Henares (UAH), and completed the master's degree "Microbiology Applied to Public Health and Infectious Diseases" from the UAH. He completed his master's thesis at the CNM under the direction of Dr. Zaragoza in 2022, focusing on pathogenic yeasts. In that year, he joined the ISCIII with an FPI predoctoral contract under the direction of Dr. Óscar Zaragoza.
-
Alejandra Lora Plaza
PhD student (FPI contract)
ORCID code: 0009-0004-4344-1583
Alejandra Lora Plaza graduated in Health Biology and completed the Master in Applied Microbiology in Public Health and Infectious Diseases Research (2021) at the University of Alcalá in both cases. She joined the Department of Microbiology of the Faculty of Biology of the University of Barcelona to carry out her internship and her final degree work. Subsequently, she did her Master's thesis at the Microbiology Laboratory of the Hospital Universitario Príncipe de Asturias. In 2022 she joined the Public Health and Epidemiology group at the Marqués de Valdecilla Research Institute (IDIVAL), Santander, as a research support technician. In 2024 he joined Dr. Concha Gil's group in the Department of Microbiology and Parasitology at the Faculty of Pharmacy of the Complutense University of Madrid focusing on yeasts.
In 2025 she joined ISCIII with a predoctoral FPI fellowship under the direction of Dr. Óscar Zaragoza.
List of staff