We protect your health through science

Investigación

Mechanisms of Antifungal Resistance in Aspergillus

Líneas de investigación

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

Resistance mechanisms of Aspergillus fumigatus to antifungals

Aspergillus fumigatus is a universally distributed opportunistic fungal pathogen with a significant global incidence and extremely high mortality. The widespread and extensive use of azole antifungals has led to the emergence of A. fumigatus azole resistant, resulting in serious consequences for patients infected with these isolates, who are left with limited therapeutic options.       
Initially, the emergence of resistant strains was very sporadic and showed point mutations in key areas of the Cyp51A enzyme (G54, G138, F219, M220, G448S) in strains isolated from patients undergoing long-term treatment with azoles. This clinical pathway is due to the selective pressure that azoles exert on A. fumigatus within the patient. However, since 2014, resistance has grown significantly, and almost all azole-resistant A. fumigatus strains have a combined mechanism of modifications in the promoter and the coding portion of cyp51A (TR34/L98H or TR46/Y121F/T289A). Both resistance mechanisms are frequently detected in strains from patients who have never been exposed to antifungal therapy. In these cases, the involvement of an environmental route is raised, in which the unintentional exposure of A. fumigatus to DMIs (imidazole and triazole) in the field would be favoring the resistance emergence.

Origin and Evolution of A. fumigatus Resistance to Antifungals

Nowadays, the isolation of A. fumigatus strains resistant to antifungals is an increasing global emergence. The continuous exposure of A. fumigatus to environmental fungicides, used for crop protection against other fungal species that cause agricultural damage, is believed to be selecting multi drug resistant strains. The main azole resistance mechanisms in A. fumigatus are strains with modifications of the azole target (cyp51A gene), mainly the TR34/L98H, followed by TR46/Y121F/A289T. Both types of mechanisms are responsible for panazole resistance and cross resistance to DMIs used for crop protection (imidazoles and triazoles). More recently, resistance to several fungicide classes such as, Bencimidazoles (MBC), Estrobilurinas (QoIs), sucinato deshidrogenase inhibitors (SDHIs) and  Dicarboximides, has also been acknowledged.

Genomic characterization (NGS) of strains from both clinical and environmental sources allows linking genomic differences with the acquisition of resistance to different fungicides. Adding data on susceptibility to non-azole antifungals provides a more precise picture of the phylogenetic relationships among strains, as distinct subclades are formed in which strains multi-resistant to non-azole antifungals grouped with azole-resistant strains with TRs resistance mechanisms. This formation of specific clades with strains that differ in geographic origin and year of isolation suggests the existence of a common link, an evolutionary origin according to which the strains have developed under similar circumstances that converge in a series of multi-resistance mechanisms to fungicides from different families. The resistance of A. fumigatus to non-azole fungicides, that are exclusively used in the environment, confirms that the strains with TRs resistance mechanisms are selected and developed in the environment where they are exposed to the selective pressure of multiple fungicides.

Tolerance and Persistence to Azole Antifungals in Aspergillus fumigatus

Tolerance and persistence are two phenomena by which pathogenic organisms can survive the microbicidal action of antimicrobials that should kill them over an extended period. In our laboratory, we investigate the ability of certain A. fumigatus isolates to exhibit tolerance and persistence to azoles, which are the first-line antifungal treatment for aspergillosis infections.

We are developing methodologies to detect and study tolerance and persistence, both in the laboratory and in clinical diagnosis. Using these methods, we are exploring the underlying molecular and genomic mechanisms that enable these phenomena. In addition, we are investigating the potential relevance of tolerance and persistence in the efficacy of antifungal treatment.

Differential Modulation of Persulfidation in the Fungus and Host as a Novel Antifungal Strategy

Persulfidation is a post-translational modification in which an activated sulfur group (S₂-), through the action of an enzyme, performs a specific nucleophilic attack on thiol (-SH) groups of cysteine residues in target proteins, forming a persulfide group (-SSH). This modification has been shown to modulate the intrinsic activity of proteins, playing a crucial role in various cellular mechanisms and physiological functions.

In our previous research, we demonstrated that correct levels of persulfidation are important both for A. fumigatus virulence and for orchestrating an adequate immune response in the host. Based on this, our research explores the hypothesis that differential modulation of persulfidation could constitute a novel antifungal treatment strategy.

We are investigating the ability of compounds to inhibit fungal enzymes responsible for persulfidation, aiming to reduce persulfidation levels and thereby decrease A. fumigatus virulence. Additionally, we are studying the use of sulfur donors as a potential means to enhance persulfidation in pulmonary host cells, with the goal of strengthening the immune response.

Evolution of Cross-Resistance to the New Antifungals Olorofim and Manogepix

Azole resistance is already present worldwide. Studies have shown that the most common resistance mechanisms—tandem repeats in the promoter of the gene encoding the azole target—have developed in agricultural settings due to the indiscriminate use of pesticides from the same family as clinical azoles.

Currently, two new clinical antifungals with novel molecular mechanisms of action have been introduced: olorofim and manogepix. However, analogous compounds with the same mechanism of action, ipflufenoquin and aminopyrifen, have also been developed for use as pesticides. This situation puts us at risk of repeating the same mistake made with azoles.

In this international collaborative project, we study the evolution of resistance and cross-resistance to these clinical and environmental antifungals. Our goal is to design strategies to minimize the emergence of resistance in the environment and develop early detection methods for antifungal resistance.

Proyectos de investigación

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

PROJECT TITLE: Consorcio Centro de Investigacion Biomedica en Red (CIBER).  Infectious Diseases Area. 
Funding Agency: CIF: G85296226.  Reference: CB21/13/00105
Dates: 2022-2026            Funding: 85.000 € (first year)
Principal Investigator: Emilia Mellado Terrado 


 

PROJECT TITLE: Modulación diferencial de la persulfidación en el hongo y el hospedador como nueva estrategia antifúngica. 
Funding Agency: Agencia Estatal de Investigación (Convocatoria Proyectos de Generación de Conocimiento"
Reference: Project PID2022-136343OA-I00 funded by MICIU/AEI /10.13039/501100011033 and by FEDER, UE
Principal Investigator: Jorge Amich. 
Dates: 2024-2026. 
Funding: 118.750 €


 

PROJECT TITLE: : Bridging the gap between environment and patient JPIAMR (AC23CIII_2/00002 (JPIAMR2023-DISTOMOS-103). 
DATES: 2024-2026            Funding: 178.000 €
Principal Investigator: Jorge Amich. 

PROJECT TITLE: : Buscando los rasgos geneticos de la resistencia de Aspergillus fumigatus a los azoles para preservar la eficacia de los azoles:un enfoque de salud global.
FUNDING AGENCY: Fondo de Investigación Sanitaria. PI21CIII/00028_ MPY443/2021
DATES: 2022-2025            Funding: 47.000 €
Principal Investigator: Emilia Mellado Terrado 

PROJECT TITLE: : Persistencia a antifúngicos azólicos en Aspergillus fumigatus: mecanismos, relevancia y diagnóstico. 
FUNDING AGENCY: AESI 2022 (PI22CIII/00053). 
DATES: 2023-2025            Funding: 55.000 €
Principal Investigator: Jorge Amich. 

PROJECT TITLE: : La medicina de precisión contra la resistencia a antimicrobianos:
CONSORCIO CENTRO DE INVESTIGACION BIOMEDICA EN RED (CIBER) CENTRO NACIONAL DE MICROBIOLOGIA
G85296226 PMP22/00092. Project MePRAM 28.107.46QF.749   Funding: 4.339.500,00€
Principal Investigator: Jesus Oteo 

Publicaciones destacadas

Sort
Category

Importance of the Aspergillus fumigatus mismatch repair protein Msh6 in antifungal resistance development

Lucio J, Gonzalez-Jimenez I, Roldan A, Amich J, Alcazar-Fuoli L and Mellado E. J Fungi (Basel). 2024 Mar 12;10(3):210

PUBMED DOI

Genetic Characterization of Brucella spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles

Pelerito A, Nunes A, Grilo T, Isidro J, Silva C, Ferreira AC, Valdezate S, Núncio MS, Georgi E, Gomes JP. (2021) Genetic Characterization of Brucella spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles. 2021. Front Microbiol. 12;12:740068

PUBMED DOI

Evaluation of onchocerciasis seroprevalence in Bioko Island (Equatorial Guinea) after years of disease control programmes.

Hernández-González A, Moya L, Perteguer MJ, Herrador Z, Nguema R, Nguema J, Aparicio P, Benito A, Gárate T. Evaluation of onchocerciasis seroprevalence in Bioko Island (Equatorial Guinea) after years of disease control programmes. Parasit Vectors. 2016 Sep 20;9(1):509.

PUBMED DOI

Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278)

6. Y. Acosta, G. Ojeda, M. P. Zafra, I. Seren-Bernardone, A. Sánchez, U. Dianzani, P. Portolés y J. M. Rojo. Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278). Inmunología, 2012, 31 (1): 4-12.

DOI

Toll-like receptors in acute kidney injury

Vázquez-Carballo C, Guerrero-Hue M, García Caballero C, Rayego-Mateos S, Opazo-Rios L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno-Gutiérrez JA. Int J Mol Sci. 2021 Jan; 22(2): 816.

PUBMED DOI

A Small Non-Coding RNA Modulates Expression of Pilus-1 Type in Streptococcus pneumoniae

Acebo P, Herranz C, Bernal-Espenberger L, Gómez-Sanz A, Terron MC, Luque D and Amblar M. Microorganisms. 2021; 9:1883.

PUBMED DOI

Guiding the humoral response against HIV-1 toward a MPER adjacent region by immunization with a VLP-formulated antibody-selected envelope variant

Beltran-Pavez C, Ferreira CB, Merino-Mansilla A, Fabra-Garcia A, Casadella M, Noguera-Julian M, Paredes R, Olvera A, Haro I, Brander C, Garcia F, Gatell JM, Yuste E, Sanchez-Merino V; PLoS One. 2018 Dec 19;13(12):e0208345

PUBMED DOI

The role of methionine synthases in fungal metabolism and virulence

Scott J and Amich J. Essays Biochem (2023) 67 (5): 853-863.

PUBMED DOI

Saezia sanguinis gen. nov., sp. nov., a Betaproteobacteria member of order Burkholderiales, isolated from human blood

Medina-Pascual MJ, Monzón S, Villalón P, Cuesta I, González-Romo F, Valdezate S. (2020). Saezia sanguinis gen. nov., sp. nov., a Betaproteobacteria member of order Burkholderiales, isolated from human blood. Int J Syst Evol Microbiol.70:2016-25.

PUBMED DOI

Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis.

Sotillo J, Ferreira I, Potriquet J, Laha T, Navarro S, Loukas A, Mulvenna J. Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis. Sci Rep. 2017 Feb 13;7:41883.

PUBMED DOI

Complement regulatory protein Crry/p65 costimulation expands natural Treg cells with enhanced suppressive properties in proteoglycan-induced arthritis.

7. Ojeda G., Pini E., Eguiluz C., Montes-Casado M., Broere F., van Eden W., Rojo J.M., and Portolés P. Complement regulatory protein Crry/p65 costimulation expands natural Treg cells with enhanced suppressive properties in proteoglycan-induced arthritis. Arthritis Rheum. 2011 Jun;63(6):1562-72.

PUBMED DOI

Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation

Fernández A, Quintana E, Velasco P, Moreno-Jimenez B, de Andrés B, Gaspar ML, Liste I, Vilar M, Mira E, Cano E. J Neuroinflammation 2021 Mar 18;18(1):75.

PUBMED DOI

Reactive oxygen species production is a major factor directing the post-antibiotic effect of fluoroquinolones in Streptococcus pneumoniae

García MT, Valenzuela MV, Ferrándiz MJ, de la Campa AG. Antimicrob Agents Chemother. 2019; 63:e00737-19.

PUBMED DOI

Detection of Broadly Neutralizing Activity within the First Months of HIV-1 Infection

Sanchez-Merino V, Fabra-Garcia A, Gonzalez N, Nicolas D, Merino-Mansilla A, Manzardo C, Ambrosioni J, Schultz A, Meyerhans A, Mascola JR, Gatell JM, Alcami J, Miro JM, Yuste E; J Virol. 2016 May 12;90(11):5231-5245

PUBMED DOI

Potential implication of azole persistence in the treatment failure of two haematological patients infected with Aspergillus fumigatus

Peláez-García de la Rasilla T, Mato-López A, Pablos-Puertas CE, González-Huerta AJ, Gómez-López A, Mellado E, Amich J. Journal of Fungi, 2023 Jul 30;9(8):805.

PUBMED DOI

Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus-Acinetobacter baumannii Complex Population

Villalón P, Ortega M, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, Valdezate S. (2019). Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus-Acinetobacter baumannii Complex Population. 2019. Front Microbiol. 22;10:593

PUBMED DOI

Fasciola spp: Mapping of the MF6 epitope and antigenic analysis of the MF6p/HDM family of heme-binding proteins.

Martínez-Sernández V, Perteguer MJ, Mezo M, González-Warleta M, Gárate T, Valero MA, Ubeira FM. Fasciola spp: Mapping of the MF6 epitope and antigenic analysis of the MF6p/HDM family of heme-binding proteins. PLoS One. 2017 Nov 21;12(11):e0188520.

PUBMED DOI

Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278)

8. Acosta Y.Y., Zafra M.P., Ojeda G., Bernardone I.S., Dianzani U., Portolés P., Rojo J.M. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell. Mol. Life Sci. 2011 Sep;68(18):3065-79.

PUBMED DOI

The TLR4-MyD88 Signaling Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae

Sánchez-Tarjuelo R, Cortegano I, Manosalva J, Rodríguez M, Ruiz C, Alía M, Prado MC, Cano EM, Ferrándiz MJ, de la Campa A, Gaspar ML, de Andrés B. Front Immunol 2020 Sep 16:11:2120.

PUBMED DOI

HU of Streptococcus pneumoniae is essential for the preservation of DNA supercoiling

Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. Front Microbiol. 9:493 (2018).

PUBMED DOI

Systematic analysis of intracellular trafficking motifs located within the cytoplasmic domain of simian immunodeficiency virus glycoprotein gp41

Postler TS, Bixby JG, Desrosiers RC, Yuste E; PLoS One. 2014 Dec 5;9(12):e114753

PUBMED DOI

Aspergillus fumigatus can exhibit persistence to the fungicidal drug voriconazole

Valero C., Á Mato-López, I J. Donaldson, A. Roldán, H. Chown, N. Van-Rhijn, S. Gago, T. Furukawa, A. Mogorovsky, R. Ben Ami, P. Bowyer, N. Osherov, T. Fontaine, G.H. Goldman, E. Mellado, M. Bromley and J. Amich. Microbiology Spectrum.2023 13;11(2):e0477022

PUBMED DOI

Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain.

Valdezate S, Garrido N, Carrasco G, Medina-Pascual MJ, Villalón P, Navarro AM, Saéz-Nieto JA. Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain. J Antimicrob Chemother. 2017;72(3):754-761.

PUBMED DOI

Revisiting the Ancylostoma caninum secretome provides new information on hookworm-host interactions.

Morante T, Shepherd C, Constantinoiu C, Loukas A, Sotillo J. Revisiting the Ancylostoma caninum secretome provides new information on hookworm-host interactions. Proteomics. 2017 Dec;17(23-24).

PUBMED DOI

Nrf2 plays a protective role against intravascular hemolysis-mediated acute kidney injury.

Rubio-Navarro A, Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Herencia C, Gutierrez E, Yuste C, Sevillano A, Praga M, Egea J, Cannata P, Cortegano I, de Andrés B, Gaspar ML, Cadenas S, Michalska P, León R, Ortiz, A, Egido J, Moreno JA. Front Pharmacol. 2019; 10: 740.

PUBMED DOI

Boldine-derived alkaloids inhibit the activity of DNA topoisomerase I and growth of Mycobacterium tuberculosis.

García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA*, de la Campa AG. Front Microbiol. 9:493 (2018).

PUBMED DOI

Evolution of broadly cross-reactive HIV-1-neutralizing activity: therapy-associated decline, positive association with detectable viremia, and partial restoration of B-cell subpopulations

Ferreira CB, Merino-Mansilla A, Llano A, Perez I, Crespo I, Llinas L, Garcia F, Gatell JM, Yuste E, Sanchez-Merino V; J Virol. 2013 Nov;87(22):12227-36

PUBMED DOI

COVID-19 Associated Pulmonary Aspergillosis (CAPA): Hospital or Home Environment as a source of life-threatening Aspergillus fumigatus infection?

Peláez-García de la Rasilla T, González-Jiménez I, García-Fernández Arroyo A, Roldán A, Carretero-Ares JL, Clemente-García M,, Martínez-Suarez M, Vázquez Valdés F, Melón-Garcia S, Mellado E, Sánchez-Nuñez ML on behalf HUCAPA group. Journal of Fungi, 2022 Mar 19;8(3):316.

PUBMED DOI

Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species.

Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernandez-Torres MA, Villalón P, Valdezate S. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect. 2017. 24;19:19-27.

PUBMED DOI

ANISERP: a new serpin from the parasite Anisakis simplex.

Valdivieso E, Perteguer MJ, Hurtado C, Campioli P, Rodríguez E, Saborido A, Martínez-Sernández V, Gómez-Puertas P, Ubeira FM, Gárate T. ANISERP: a new serpin from the parasite Anisakis simplex.Parasit Vectors. 2015 Jul 28;8:399.

PUBMED DOI

ICOS deficiency hampers the homeostasis, development and activity of NK cell

Montes-Casado M, Ojeda G, Aragoneses-Fenoll L, López D, de Andrés B, Gaspar ML, Dianzani U, Rojo JM, Portolés P. PLoS One 2019 Jul 8;14(7):e0219449.

PUBMED DOI

Absence of tmRNA has a protective effect against fluoroquinolones in Streptococcus pneumoniae

Brito L, Wilton J, Ferrándiz MJ, Gómez-Sanz A, de la Campa AG, Amblar M. Front. Microbiol. 7:2164 (2017).

PUBMED DOI

Broth microdilution protocol for determining antimicrobial susceptibility of Legionella pneumophila to clinically relevant antimicrobials

Sewell M, Farley C, Portal EAR, Lindsay D, Ricci ML, Jarraud S, Scaturro M, Descours G, Krøvel AV, Barton R, Boostom I, Ure R, Kese D, Gaia V, Golob M, Paukner S, Ginevra C, Afshar B, Nadarajah S, Wybo I, Michel C, Echahdi F, González-Rubio JM, González-Camacho F, Mentasti M, Flountzi AS, Petzold M, Moran-Gilad J, Uldum S, Winchell J, Wooton M, Bernard K, Jones LC, Chalker VJ, Spiller OB. J Microbiol Methods. 2025 Jan;228:107071.

PUBMED DOI

Human immunodeficiency virus type 1 and related primate lentiviruses engage clathrin through Gag-Pol or Gag

Popov S, Strack B, Sanchez-Merino V, Popova E, Rosin H, Gottlinger HG; J Virol. 2011 Apr;85(8):3792-801

PUBMED DOI

An expanded agar base secreening method for azole resistant Aspergillus fumigatus

Lucio J, Gonzalez-Jimenez I, Garcia-Rubio R, Cuetara MS and Mellado E. Mycoses 2022, 65 (2): 178-185.

PUBMED DOI

Shortcomings of the commercial MALDI-TOF MS database and use of MLSA as an arbiter in the identification of Nocardia species

Carrasco G, de Dios Caballero J, Garrido N, Valdezate S, Cantón R, Sáez-Nieto JA. Shortcomings of the commercial MALDI-TOF MS database and use of MLSA as an arbiter in the identification of Nocardia species. Front Microbiol. 2016 21;7:542.

PUBMED DOI

Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance

Braza MS, Conde P, García M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, Mulder WJM, Ochando J. Am J Transplant 2018 May;18(5):1247-1255.

PUBMED DOI

Bridging chromosomal architecture and pathophysiology of Streptococcus pneumoniae

Martín-Galiano AJ, Ferrándiz MJ, de la Campa AG. Genome Biol Evol. 2017; 9:350-361.

PUBMED DOI

Definition of the viral targets of protective HIV-1-specific T cell responses

Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C, Zamarreno J, Bach V, Zuniga R, Perez-Alvarez S, Berger CT, Puertas MC, Martinez-Picado J, Rolland M, Farfan M, Szinger JJ, Hildebrand WH, Yang OO, Sanchez-Merino V, Brumme CJ, Brumme ZL, Heckerman D, Allen TM, Mullins JI, Gomez G, Goulder PJ, Walker BD, Gatell JM, Clotet B, Korber BT, Sanchez J, Brander C; J Transl Med. 2011 Dec 7;9:208

PUBMED DOI

Are point mutations in HMG-CoA reductases (Hmg1 and Hmg2) a step towards azole resistance in Aspergillus fumigatus?

Gonzalez-Jimenez I., Lucio J., Roldan A, Alcazar-Fuoli L. and Mellado E. Molecules, 2021, 26(19):5975.

PUBMED DOI

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

List of staff

Información adicional

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .