We protect your health through science

Investigación

Mechanisms of Antifungal Resistance in Aspergillus

Líneas de investigación

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

Resistance mechanisms of Aspergillus fumigatus to antifungals

Aspergillus fumigatus is a universally distributed opportunistic fungal pathogen with a significant global incidence and extremely high mortality. The widespread and extensive use of azole antifungals has led to the emergence of A. fumigatus azole resistant, resulting in serious consequences for patients infected with these isolates, who are left with limited therapeutic options.       
Initially, the emergence of resistant strains was very sporadic and showed point mutations in key areas of the Cyp51A enzyme (G54, G138, F219, M220, G448S) in strains isolated from patients undergoing long-term treatment with azoles. This clinical pathway is due to the selective pressure that azoles exert on A. fumigatus within the patient. However, since 2014, resistance has grown significantly, and almost all azole-resistant A. fumigatus strains have a combined mechanism of modifications in the promoter and the coding portion of cyp51A (TR34/L98H or TR46/Y121F/T289A). Both resistance mechanisms are frequently detected in strains from patients who have never been exposed to antifungal therapy. In these cases, the involvement of an environmental route is raised, in which the unintentional exposure of A. fumigatus to DMIs (imidazole and triazole) in the field would be favoring the resistance emergence.

Origin and Evolution of A. fumigatus Resistance to Antifungals

Nowadays, the isolation of A. fumigatus strains resistant to antifungals is an increasing global emergence. The continuous exposure of A. fumigatus to environmental fungicides, used for crop protection against other fungal species that cause agricultural damage, is believed to be selecting multi drug resistant strains. The main azole resistance mechanisms in A. fumigatus are strains with modifications of the azole target (cyp51A gene), mainly the TR34/L98H, followed by TR46/Y121F/A289T. Both types of mechanisms are responsible for panazole resistance and cross resistance to DMIs used for crop protection (imidazoles and triazoles). More recently, resistance to several fungicide classes such as, Bencimidazoles (MBC), Estrobilurinas (QoIs), sucinato deshidrogenase inhibitors (SDHIs) and  Dicarboximides, has also been acknowledged.

Genomic characterization (NGS) of strains from both clinical and environmental sources allows linking genomic differences with the acquisition of resistance to different fungicides. Adding data on susceptibility to non-azole antifungals provides a more precise picture of the phylogenetic relationships among strains, as distinct subclades are formed in which strains multi-resistant to non-azole antifungals grouped with azole-resistant strains with TRs resistance mechanisms. This formation of specific clades with strains that differ in geographic origin and year of isolation suggests the existence of a common link, an evolutionary origin according to which the strains have developed under similar circumstances that converge in a series of multi-resistance mechanisms to fungicides from different families. The resistance of A. fumigatus to non-azole fungicides, that are exclusively used in the environment, confirms that the strains with TRs resistance mechanisms are selected and developed in the environment where they are exposed to the selective pressure of multiple fungicides.

Tolerance and Persistence to Azole Antifungals in Aspergillus fumigatus

Tolerance and persistence are two phenomena by which pathogenic organisms can survive the microbicidal action of antimicrobials that should kill them over an extended period. In our laboratory, we investigate the ability of certain A. fumigatus isolates to exhibit tolerance and persistence to azoles, which are the first-line antifungal treatment for aspergillosis infections.

We are developing methodologies to detect and study tolerance and persistence, both in the laboratory and in clinical diagnosis. Using these methods, we are exploring the underlying molecular and genomic mechanisms that enable these phenomena. In addition, we are investigating the potential relevance of tolerance and persistence in the efficacy of antifungal treatment.

Differential Modulation of Persulfidation in the Fungus and Host as a Novel Antifungal Strategy

Persulfidation is a post-translational modification in which an activated sulfur group (S₂-), through the action of an enzyme, performs a specific nucleophilic attack on thiol (-SH) groups of cysteine residues in target proteins, forming a persulfide group (-SSH). This modification has been shown to modulate the intrinsic activity of proteins, playing a crucial role in various cellular mechanisms and physiological functions.

In our previous research, we demonstrated that correct levels of persulfidation are important both for A. fumigatus virulence and for orchestrating an adequate immune response in the host. Based on this, our research explores the hypothesis that differential modulation of persulfidation could constitute a novel antifungal treatment strategy.

We are investigating the ability of compounds to inhibit fungal enzymes responsible for persulfidation, aiming to reduce persulfidation levels and thereby decrease A. fumigatus virulence. Additionally, we are studying the use of sulfur donors as a potential means to enhance persulfidation in pulmonary host cells, with the goal of strengthening the immune response.

Evolution of Cross-Resistance to the New Antifungals Olorofim and Manogepix

Azole resistance is already present worldwide. Studies have shown that the most common resistance mechanisms—tandem repeats in the promoter of the gene encoding the azole target—have developed in agricultural settings due to the indiscriminate use of pesticides from the same family as clinical azoles.

Currently, two new clinical antifungals with novel molecular mechanisms of action have been introduced: olorofim and manogepix. However, analogous compounds with the same mechanism of action, ipflufenoquin and aminopyrifen, have also been developed for use as pesticides. This situation puts us at risk of repeating the same mistake made with azoles.

In this international collaborative project, we study the evolution of resistance and cross-resistance to these clinical and environmental antifungals. Our goal is to design strategies to minimize the emergence of resistance in the environment and develop early detection methods for antifungal resistance.

Proyectos de investigación

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

PROJECT TITLE: Consorcio Centro de Investigacion Biomedica en Red (CIBER).  Infectious Diseases Area. 
Funding Agency: CIF: G85296226.  Reference: CB21/13/00105
Dates: 2022-2026            Funding: 85.000 € (first year)
Principal Investigator: Emilia Mellado Terrado 


 

PROJECT TITLE: Modulación diferencial de la persulfidación en el hongo y el hospedador como nueva estrategia antifúngica. 
Funding Agency: Agencia Estatal de Investigación (Convocatoria Proyectos de Generación de Conocimiento"
Reference: Project PID2022-136343OA-I00 funded by MICIU/AEI /10.13039/501100011033 and by FEDER, UE
Principal Investigator: Jorge Amich. 
Dates: 2024-2026. 
Funding: 118.750 €


 

PROJECT TITLE: : Bridging the gap between environment and patient JPIAMR (AC23CIII_2/00002 (JPIAMR2023-DISTOMOS-103). 
DATES: 2024-2026            Funding: 178.000 €
Principal Investigator: Jorge Amich. 

PROJECT TITLE: : Buscando los rasgos geneticos de la resistencia de Aspergillus fumigatus a los azoles para preservar la eficacia de los azoles:un enfoque de salud global.
FUNDING AGENCY: Fondo de Investigación Sanitaria. PI21CIII/00028_ MPY443/2021
DATES: 2022-2025            Funding: 47.000 €
Principal Investigator: Emilia Mellado Terrado 

PROJECT TITLE: : Persistencia a antifúngicos azólicos en Aspergillus fumigatus: mecanismos, relevancia y diagnóstico. 
FUNDING AGENCY: AESI 2022 (PI22CIII/00053). 
DATES: 2023-2025            Funding: 55.000 €
Principal Investigator: Jorge Amich. 

PROJECT TITLE: : La medicina de precisión contra la resistencia a antimicrobianos:
CONSORCIO CENTRO DE INVESTIGACION BIOMEDICA EN RED (CIBER) CENTRO NACIONAL DE MICROBIOLOGIA
G85296226 PMP22/00092. Project MePRAM 28.107.46QF.749   Funding: 4.339.500,00€
Principal Investigator: Jesus Oteo 

Publicaciones destacadas

Sort
Category

Fernandez-Garcia MD, Simon-Loriere E, Kebe O, Sakuntabhai A, Ndiaye K. Identification and molecular characterization of the first complete genome sequence of Human Parechovirus type 15. Sci Rep. 2020 Apr 21

Fernandez-Garcia MD, Simon-Loriere E, Kebe O, Sakuntabhai A, Ndiaye K. Identification and molecular characterization of the first complete genome sequence of Human Parechovirus type 15. Sci Rep. 2020 Apr 21;10(1):6759. doi: 10.1038/s41598-020-63467-w. PMID: 32317760; PMCID: PMC7174385.

Casas-Alba D, Valero-Rello A, Muchart J, Armangué T, Jordan I, Cabrerizo M, Molero-Luís M, Artuch R, Fortuny C, Muñoz-Almagro C, Launes C. Cerebrospinal Fluid Neopterin in Children With Enterovirus-Related Brainstem Encephalitis. Pediatr Neurol. 2019 Jul

Casas-Alba D, Valero-Rello A, Muchart J, Armangué T, Jordan I, Cabrerizo M, Molero-Luís M, Artuch R, Fortuny C, Muñoz-Almagro C, Launes C. Cerebrospinal Fluid Neopterin in Children With Enterovirus-Related Brainstem Encephalitis. Pediatr Neurol. 2019 Jul; 96:70-73. doi: 10.1016/j.pediatrneurol.2019.01.024. Epub 2019 Feb 7. PMID: 30935719.

González-Sanz R, Taravillo I, Reina J, Navascués A, Moreno-Docón A, Aranzamendi M, Romero MP, Del Cuerpo M, Pérez-González C, Pérez-Castro S, Otero A, Cabrerizo M. Enterovirus D68-associated respiratory and neurological illness in Spain, 2014-2018.

González-Sanz R, Taravillo I, Reina J, Navascués A, Moreno-Docón A, Aranzamendi M, Romero MP, Del Cuerpo M, Pérez-González C, Pérez-Castro S, Otero A, Cabrerizo M. Enterovirus D68-associated respiratory and neurological illness in Spain, 2014-2018. Emerg Microbes Infect. 2019;8(1):1438-1444. doi: 10.1080/22221751.2019.1668243. PMID: 31571527; PMCID: PMC6781473.

Monocytic Myeloid-Derived Suppressor Cells Accumulate in Renal Transplant Patients and Mediate CD4(+) Foxp3(+) Treg Expansion

Luan Y, Mosheir E, Menon MC, Wilson D, Woytovich C, Ochando J, Murphy B. Monocytic Myeloid-Derived Suppressor Cells Accumulate in Renal Transplant Patients and Mediate CD4(+) Foxp3(+) Treg Expansion. 2013. Am J Transplant.13(12):3123-31.

PUBMED DOI

New insights into the multidimensional concept of macrophage ontogeny, activation and function.

Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. 2015. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 17(1):34-40.

PUBMED DOI

Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, Goecze I, Wege A, Fändrich F, Schlitt H, Banas B, Lutz M, Sawitzki B, Ochando J, Geissler E and Hutchinson J. Generation of BTNL8+ TIGIT+ Tregs by Human Regulatory Macrophages Before Kidney Transplantation. Nat Commun.

Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N, Goecze I, Wege A, Fändrich F, Schlitt H, Banas B, Lutz M, Sawitzki B, Ochando J, Geissler E and Hutchinson J. Generation of BTNL8+ TIGIT+ Tregs by Human Regulatory Macrophages Before Kidney Transplantation. Nat Commun. 2018; Jul 20;9(1):2858. PMID: 30030423.

Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance

Braza MS, Lameijer M, Sanchez-Gaytan B, Arts R, Pérez-Medina C, Conde P, Brahmachary M, van der Touw W, Fay F, Kluza E, Kossatz S, Stroes E, Kroon J, Dress R, Salem F, Rialdi A, Reiner T, Boros P, van Leent M, Strijkers G, Calcagno C, Ginhoux F, Marazzi I, Lutgens E, Nicolaes G, Weber C, Swirski F, Nahrendorf M, Fisher E, Fayad Z, Duivenvoorden R, Netea M, Mulder WJ, and Ochando J. Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance.Immunity. 2018; 20;49(5):819-828.e6. PMID: 30413362.

PUBMED DOI

Fernandez-Garcia MD, Volle R, Joffret ML, Sadeuh-Mba SA, Gouandjika-Vasilache I, Kebe O, Wiley MR, Majumdar M, Simon-Loriere E, Sakuntabhai A, Palacios G, Martin J, Delpeyroux F, Ndiaye K, Bessaud M. Genetic Characterization of Enterovirus A71 Circulating in Africa.

Fernandez-Garcia MD, Volle R, Joffret ML, Sadeuh-Mba SA, Gouandjika-Vasilache I, Kebe O, Wiley MR, Majumdar M, Simon-Loriere E, Sakuntabhai A, Palacios G, Martin J, Delpeyroux F, Ndiaye K, Bessaud M. Genetic Characterization of Enterovirus A71 Circulating in Africa. Emerg Infect Dis. 2018 Apr;24(4):754-757. doi: 10.3201/eid2404.171783. PMID: 29553325; PMCID: PMC5875259.

Leon KE, Schubert RD, Casas-Alba D, Hawes IA, Ramachandran PS, Ramesh A, Pak JE, Wu W, Cheung CK, Crawford ED, Khan LM, Launes C, Sample HA, Zorn KC, Cabrerizo M, Valero-Rello A, Langelier C, Muñoz-Almagro C, DeRisi JL, Wilson MR. Genomic and serologic characterization of enterovirus A71 brainstem encephalitis. Neurol Neuroimmunol Neuroinflamm. 2020

Leon KE, Schubert RD, Casas-Alba D, Hawes IA, Ramachandran PS, Ramesh A, Pak JE, Wu W, Cheung CK, Crawford ED, Khan LM, Launes C, Sample HA, Zorn KC, Cabrerizo M, Valero-Rello A, Langelier C, Muñoz-Almagro C, DeRisi JL, Wilson MR. Genomic and serologic characterization of enterovirus A71 brainstem encephalitis. Neurol Neuroimmunol Neuroinflamm. 2020 Mar 5;7(3):e703. doi: 10.1212/NXI.0000000000000703. PMID: 32139440; PMCID: PMC7136061.

González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey- Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. Euro Surveill. 2019

González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey- Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. Euro Surveill. 2019 Feb;24(7):1800089. doi: 10.2807/1560-7917.ES.2019.24.7.1800089. PMID: 30782267; PMCID: PMC6381658.

Spanish Afp Surveillance Working Group. Acute flaccid paralysis (AFP) surveillance: challenges and opportunities from 18 years' experience, Spain, 1998 to 2015. Euro Surveill.

Spanish Afp Surveillance Working Group. Acute flaccid paralysis (AFP) surveillance: challenges and opportunities from 18 years' experience, Spain, 1998 to 2015. Euro Surveill. 2018 Nov;23(47):1700423. doi: 10.2807/1560-7917.ES.2018.23.47.1700423. PMID: 30482263; PMCID: PMC6341937.

Molecular Epidemiology of Human Parechoviruses in Children With Acute Respiratory Infection in Spain

M Cabrerizo*, C Calvo, G Trallero, ML García-García, M Arroyas, V Sánchez, F Pozo, I Casas. Molecular epidemiology of human parechoviruses children with acute respiratory infection in Spain. Pediatric Infect Dis J 32:802-3 (2013).

PUBMED DOI

Identification of novel Betaherpesviruses in iberian bats reveals parallel evolution

Pozo F, Juste J, Vázquez-Morón S., Aznar-López C, Ibáñez C, Garin I, Aihartza J, Casa I, Tenorio A, Echevarría JE. Identification of novel Betaherpesviruses in iberian bats reveals parallel evolution. PLoS ONE. 2016. 11(12): e0169153. doi:10.1371/journal.pone.0169153

PUBMED DOI

Detection of Rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats

Aznar C, Vazquez-Moron S, Martson D, Juste J, Ibáñez C, Berciano JM, Salsamendi E, Aihartza J, Banyard AC, McElhinney L, Fooks AR, Echevarria JE. Detection of Rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats. Journal of General Virology. 2013. 94: 69-75.

PUBMED DOI

Genomic non-coding regions reveal hidden patterns of mumps virus circulation in Spain, 2005 to 2015

Gavilán AM, Fernández-García A*, Rueda A, Castellanos A, Masa J, López-Perea N, Torres de Mier MV, de Ory F, Echevarría JE. Non-coding sequences reveal hidden patterns of mumps virus circulation in Spain, 2005 to 2015. Eurosurveillance,2018, 23(15): 1-8. *Corresponding author.

PUBMED DOI

First cases of European Bat Lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe.

Mingo-Casas P, Sandonís V, Obón E, Berciano JM, Vázquez-Morón S, Juste J, Echevarría JE. First cases of European Bat Lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. Plos Neglected Tropical Diseases, 2018: 12(4): e0006290.

PUBMED DOI

Last cases of rubella and congenital rubella syndrome in Spain, 1997–2016: The success of a vaccination program

Seppälä EM, López-Perea N, Torres de Mier MV, Echevarría JE, Fernández García A, Masa-Calles J. Last cases of rubella and congenital rubella syndrome in Spain, 1997–2016: The success of a vaccination program. Vaccine, 2019, 37(1):169-175.

PUBMED DOI

Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms

Llamosí M, Sempere J, Coronel P, Gimeno M, Yuste J, Domenech M. Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms. Microbiol Spectr. 2022 Dec 21;10(6):e0341522

PUBMED DOI

Clearance of mixed biofilms of Streptococcus pneumoniae and methicillin-susceptible/resistant Staphylococcus aureus by antioxidants N-acetyl-L-cysteine and cysteamine

Sempere J, Llamosí M, Román F, Lago D, González-Camacho F, Pérez-García C, Yuste J, Domenech M. Clearance of mixed biofilms of Streptococcus pneumoniae and methicillin-susceptible/resistant Staphylococcus aureus by antioxidants N-acetyl-L-cysteine and cysteamine. Sci Rep. 2022 Apr 23;12(1):6668

PUBMED DOI

Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain

Sempere J, de Miguel S, González-Camacho F, Yuste J, Domenech M. Clinical Relevance and Molecular Pathogenesis of the Emerging Serotypes 22F and 33F of Streptococcus pneumoniae in Spain. Front Microbiol. 2020 Feb 27;11:309.

PUBMED DOI

Combination of Antibodies and Antibiotics as a Promising Strategy Against Multidrug-Resistant Pathogens of the Respiratory Tract

Domenech M, Sempere J, de Miguel S, Yuste J. Combination of Antibodies and Antibiotics as a Promising Strategy Against Multidrug-Resistant Pathogens of the Respiratory Tract. Front Immunol. 2018 Nov 20;9:2700. doi: 10.3389/fimmu.2018.02700. PMID: 30515172; PMCID: PMC6256034.

DOI

Chemotherapy with Phage Lysins Reduces Pneumococcal Colonization of the Respiratory Tract

Corsini B, Díez-Martínez R, Aguinagalde L, González-Camacho F, García-Fernández E, Letrado P, García P, Yuste J. Chemotherapy with Phage Lysins Reduces Pneumococcal Colonization of the Respiratory Tract. Antimicrob Agents Chemother. 2018 May 25;62(6):e02212-17. doi: 10.1128/AAC.02212-17. PMID: 29581113; PMCID: PMC5971604.

DOI

Impact of Biological Therapies on the Immune Response after Pneumococcal Vaccination in Patients with Autoimmune Inflammatory Diseases

Richi P, Yuste J, Navío T, González-Hombrado L, Salido M, Thuissard-Vasallo I, Jiménez-Díaz A, Llorente J, Cebrián L, Lojo L, Steiner M, Cobo T, Martín MD, García-Castro M, Castro P, Muñoz-Fernández S. Impact of Biological Therapies on the Immune Response after Pneumococcal Vaccination in Patients with Autoimmune Inflammatory Diseases. Vaccines. 2021 Feb 28;9(3):203. doi: 10.3390/vaccines9030203. PMID: 33671007; PMCID: PMC7997274.

DOI

Pleiotropic Effects of Cell Wall Amidase LytA on Streptococcus pneumoniae Sensitivity to the Host Immune Response

Ramos-Sevillano E, Urzainqui A, Campuzano S, Moscoso M, González-Camacho F, Domenech M, Rodríguez de Córdoba S, Sánchez-Madrid F, Brown JS, García E, Yuste J. Pleiotropic effects of cell wall amidase LytA on Streptococcus pneumoniae sensitivity to the host immune response. Infect Immun. 2015 Feb;83(2):591-603. doi: 10.1128/IAI.02811-14. PMID: 25404032; PMCID: PMC4294232.

DOI

PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease

Ramos-Sevillano E, Urzainqui A, de Andrés B, González-Tajuelo R, Domenech M, González-Camacho F, Sánchez-Madrid F, Brown JS, García E, Yuste J. PSGL-1 on Leukocytes is a Critical Component of the Host Immune Response against Invasive Pneumococcal Disease. PLoS Pathog. 2016 Mar 14;12(3):e1005500. doi: 10.1371/journal.ppat.1005500. PMID: 26975045; PMCID: PMC4790886.

DOI

Comparison of methods and characterization of small RNAs from plasma extracellular vesicles of HIV/HCV coinfected patients

Martínez-González E; Brochado-Kith O; Gómez-Sanz A; et al; Fernández-Rodríguez A (AC). (9/9). 2020. Small RNA sequencing from plasma extracellular vesicles of HIV/HCV coinfected patients: a protocol comparison SCIENTIFIC REPORTS. 9. ISSN 2045-2322.

DOI

Relative telomere length impact on mortality of COVID-19: Sex differences

Virseda-Berdices A; Concostrina-Martinez L; Martínez-González O;et al; Fernández-Rodríguez A (AC). (14/14). 2022. Relative telomere length impact on mortality of COVID-19: Sex differences.Journal of medical virology. 95, pp.e28368. ISSN 0146-6615.

DOI

Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessmen

U. Voguel, M.K. Taha, J.A. Vázquez, J. Findlow, H. Claus, P. Stefanelli, D.A. Caugant, P. Kriz, R. Abad, S. Bambini, A. Carannante, A.E. Deghmane, C. Fazio, M. Frosch, G. Frosi, S. Gilchrist, M.M. Giulani, E. Hong, M. Ledroit, P.G. Lovaglio, J. Lucidarme, M. Musilek, A. Muzzi, J. Oksne, F. Rigat, L. Orlandi, M. Stella, D. Thompson, M. Pizza, R. Rappuoli, D. Serruto, M. Comanducci, G. Boccadifuoco, J.J. Donnely, D. Medini, R. Borrow. “Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment”. Lancet Infect Dis. 2013 May; 13(5): 416-25.

PUBMED DOI

Hepatitis C Virus Influences HIV-1 Viral Splicing in Coinfected Patients

Martínez-Román P; López-Huertas MR; Crespo-Bermejo C; et al; Briz V (AC). (16/15). 2020. Hepatitis C virus influences HIV-1 viral splicing in coinfected patients JOURNAL OF CLINICAL MEDICINE. MDPI. ISSN 2077-0383.

DOI

Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey

Harris SR, Cole MJ, Spiteri G, Sánchez-Busó L, Golparian D, Jacobsson S, Goater R, Abudahab K, Yeats CA, Bercot B, Borrego MJ, Crowley B, Stefanelli P, Tripodo F, Abad R, Aanensen DM, Unemo M, Euro-GASP study group. “Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe”. Lancet Infect Dis. 2018 Jul; 18(7):758-768.

PUBMED DOI

HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients

Brochado-Kith; Martínez I; Berenguer J; et al; Fernández-Rodríguez A (AC); Resino S. (11/12). 2021. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. Journal of Biomedical Sciences. Springer Nature. 28-1.

DOI

Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance

Martínez-Román P; Crespo-Bermejo C; Valle-Millares D; et al; Fernández-Rodríguez A (AC); On Behalf Of The Covihep Network. (12/15). 2022. Dynamics of HIV Reservoir and HIV-1 Viral Splicing in HCV-Exposed Individuals after Elimination with DAAs or Spontaneous Clearance. Journal of clinical medicine. 11. ISSN 2077-0383. WOS (52)

DOI

OLFM4 polymorphisms predict septic shock survival after major surgery. Eur J Clin Invest.

Pérez-García F; Resino S; Gómez-Sánchez E; et al; Jiménez-Sousa MÁ (10/10). OLFM4 polymorphisms predict septic shock survival after major surgery. Eur J Clin Invest. 2021. 51(4):e13416. doi: 10.1111/eci.13416.

Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Buitrago MJ, Lopez JF, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL. Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother. 2006 Feb

Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Buitrago MJ, Lopez JF, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL. Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother. 2006 Feb;50(2):453-60. doi: 10.1128/AAC.50.2.453-460.2006. PMID: 16436696; PMCID: PMC1366924.

PUBMED

14. Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008 Apr

Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus section Fumigati: antifungal susceptibility patterns and sequence-based identification. Antimicrob Agents Chemother. 2008 Apr;52(4):1244-51. doi: 10.1128/AAC.00942-07. Epub 2008 Jan 22. PMID: 18212093; PMCID: PMC2292508.

PUBMED DOI

Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009 Oct

Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009 Oct;53(10):4514-7. doi: 10.1128/AAC.00585-09. Epub 2009 Jul 27. PMID: 19635955; PMCID: PMC2764190.

PUBMED DOI

Alcazar-Fuoli L, Mellado E, Cuenca-Estrella M, Sanglard D. Probing the role of point mutations in the cyp51A gene from Aspergillus fumigatus in the model yeast Saccharomyces cerevisiae. Med Mycol. 2011 Apr

Alcazar-Fuoli L, Mellado E, Cuenca-Estrella M, Sanglard D. Probing the role of point mutations in the cyp51A gene from Aspergillus fumigatus in the model yeast Saccharomyces cerevisiae. Med Mycol. 2011 Apr;49(3):276-84. doi: 10.3109/13693786.2010.512926. Epub 2010 Sep 10. PMID: 20831364.

PUBMED DOI

Alcazar-Fuoli L, Cuesta I, Rodriguez-Tudela JL, Cuenca-Estrella M, Sanglard D, Mellado E. Three-dimensional models of 14α-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. Int J Antimicrob Agents. 2011 Nov

Alcazar-Fuoli L, Cuesta I, Rodriguez-Tudela JL, Cuenca-Estrella M, Sanglard D, Mellado E. Three-dimensional models of 14α-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. Int J Antimicrob Agents. 2011 Nov;38(5):426-34. doi: 10.1016/j.ijantimicag.2011.06.005. Epub 2011 Aug 25. PMID: 21871783.

PUBMED DOI

Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance.

Alcazar-Fuoli L, Mellado E. Ergosterol biosynthesis in Aspergillus fumigatus: its relevance as an antifungal target and role in antifungal drug resistance. Front Microbiol. 2013 Jan 10;3:439. doi: 10.3389/fmicb.2012.00439. PMID: 23335918; PMCID: PMC3541703.

PUBMED DOI

Bernal-Martínez L, Alcazar Fuoli L, Miguel-Revilla B, Carvalho A, Cuétara Garcia MS, Garcia-Rodriguez J, Cunha C, Gómez-García de la Pedrosa E, Gomez-Lopez A. High-Resolution Melting Assay for Genotyping Variants of the CYP2C19 Enzyme and Predicting Voriconazole Effectiveness. Antimicrob Agents Chemother. 2019 May 24

Bernal-Martínez L, Alcazar Fuoli L, Miguel-Revilla B, Carvalho A, Cuétara Garcia MS, Garcia-Rodriguez J, Cunha C, Gómez-García de la Pedrosa E, Gomez-Lopez A. High-Resolution Melting Assay for Genotyping Variants of the CYP2C19 Enzyme and Predicting Voriconazole Effectiveness. Antimicrob Agents Chemother. 2019 May 24;63(6):e02399-18. doi: 10.1128/AAC.02399-18. PMID: 30910893; PMCID:PMC6535561.

PUBMED DOI

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .

List of staff

Información adicional

Content with Investigacion Mecanismos de resistencia a antifúngicos en Aspergillus .