We protect your health through science

Investigación

Bacterial Genetics

Líneas de investigación

Content with Investigacion Genética Bacteriana .

Bacterial Genetics

Our group has been studying for more than 30 years the mechanisms of antibiotic resistance in Streptococcus pneumoniae (Spn). Our objectives are to understand the molecular basis of antimicrobial action, to search for new targets of action and new compounds. Seconeolitsine (SCN) is one of these new compounds targeting topoisomerase I (Topo I). As for the search for new targets, our research has focused in recent years on the factors that organize the topology of the chromosome, allowing optimal compaction (about 1000-fold) to harmonize its replication, chromosome segregation and gene expression. This compaction is mediated both by the level of DNA supercoiling (Sc) and by association with nucleoid-binding proteins (NAPs). The level of Sc depends mainly on the enzymatic activities of their DNA topoisomerases, reaching a homeostatic equilibrium by the opposite activities of the topoisomerases that relax DNA (Topo I and Topo IV), and of gyrase, which introduces negative Sc. Our group has characterized the three Spn topoisomerases and two NAPs: HU and SatR. In addition, the availability of antimicrobials that inhibit each of the Spn topoisomerases has allowed us to analyze their transcriptome under conditions of local or global change of the Sc level and to define gene domains of coordinated transcription and similar functions. Fluoroquinolones, which inhibit Topo IV and gyrase, produce local changes in Sc that induce alterations in 6% of the transcriptome, altering metabolic pathways that originate an increase in reactive oxygen species (ROS) that contribute to lethality, in accordance with the general mechanism of bactericidal antibiotics. On the other hand, the induction of global changes in Sc by novobiocin (NOV, gyrase inhibitor), or by SCN (Topo I inhibitor), has allowed us to define topological domains. Global changes in Sc include the regulation of topoisomerase genes: its decrease activates the transcription of gyrase genes (gyrA, gyrB) and inhibits those of Topo IV (parEC) and Topo I (topA); the increase in Sc regulates the expression of topA. Decreased Sc affects 37% of the genome, with >68% of genes clustered in 15 domains. Increased Sc affects 10% of the genome, with 25% of the genes clustered in 12 domains. The AT content in the genome correlates with the domains, being higher in UP domains than in DOWN domains. The genes in the different domains have common functional characteristics, indicating that they have been subjected to topological selective pressure to determine the location of genes involved in metabolism, virulence and competition. 

The current objectives of the group are:
1.    Identification of factors that stabilize chromosome topology: NAPs, ncRNAs, intra-chromosomal interactions.
2.    Regulation of transcription in response to topological stress: in vivo localization of DNA topoisomerases, RNA polymerase and NAPs.
3.    Topo I as a new antimicrobial target and action of SCN. 
4.    Design of antisense RNAs and use of the CRISPR system as new antibacterial agents.

Proyectos de investigación

Content with Investigacion Genética Bacteriana .

1) Project Title: Interaction Between DNA Supercoiling and Transcription in the Human Pathogen  Streptococcus pneumoniae

Principal Investigator:   Adela González de la Campa  
Funding Entity:   Ministry of Science and Innovation, State Research Agency (Call for "R&D&I Projects" 2020 – "Research Challenges" and "Knowledge Generation" Modalities).  
Reference:   PID2021-124738OB-100.  
Duration:   2022-2025.  
Funding Amount:   €108,900.
Imagen1.jpg

2) Project Title:   Study of the Factors Organizing the Chromosome of  Streptococcus pneumoniae: New Antibiotic Targets and Resistance Mechanisms.

Principal Investigator:   Adela González de la Campa  
Funding Entity:   Ministry of Economy, Industry, and Competitiveness. State Research Agency.  
Reference:   BIO2017-82951-R.  
Duration:   2018-2020.  
Funding Amount:   €169,400.  

3) Project Title:   Role of DNA Topoisomerases and Nucleoid-Associated Proteins in the Chromosome Organization of  Streptococcus pneumoniae: Response to Antibiotics and Virulence.  

Principal Investigator:   Adela González de la Campa  
Funding Entity:   Ministry of Economy and Competitiveness. Secretariat of State for Research, Development, and Innovation.  
Reference:   BIO2014-55462.  
Duration:   2015-2017.  
Funding Amount:   €193,600.  

4) Project Title:   The Control of Supercoiling Level in  Streptococcus pneumoniae  as an Antimicrobial Target.  

Principal Investigator:   Adela González de la Campa  
Funding Entity:   Ministry of Economy and Competitiveness. Secretariat of State for Research, Development, and Innovation.  
Reference:   BIO2011-25343.  
Duration:   2012-2015.  
Funding Amount:   €209,000.  

5) Project Title:   Role of Small Non-Coding RNAs in the Pathogenicity of  Streptococcus pneumoniae.   

Principal Investigator:   Mónica Amblar Esteban  
Funding Entity:   Ministry of Economy and Competitiveness. Strategic Health Action (AES).  
Reference:   PI11/00656.  
Duration:   2012-2015.  
Funding Amount:   €198,714.
 

Publicaciones destacadas

Sort
Category

Human Immunodeficiency Virus Type 1 Two-Long Terminal Repeat Circles: A Subject for Debate. Olivares I, Pernas M, Casado C, López-Galindez C

Human Immunodeficiency Virus Type 1 Two-Long Terminal Repeat Circles: A Subject for Debate. Olivares I, Pernas M, Casado C, López-Galindez C. AIDS Rev. 2016 Jan-Mar,18(1):23-31. PMID: 26936759

DOI

HIV-1 Dual Infected LTNP-EC Patients Developed an Unexpected Antibody Cross-Neutralizing Activity. Pernas M, Sanchez-Merino V, Casado C, Merino-Mansilla A, Olivares I, Yuste E, Lopez-Galindez C

HIV-1 Dual Infected LTNP-EC Patients Developed an Unexpected Antibody Cross-Neutralizing Activity. Pernas M, Sanchez-Merino V, Casado C, Merino-Mansilla A, Olivares I, Yuste E, Lopez-Galindez C. PLoS One. 2015 Aug 10,10(8): e0134054. doi: 10.1371/journal.pone.0134054. eCollection 2015.

DOI

Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation FRONTIERS IN IMMUNOLOGY.

3 Ceballos, Francisco C.; Virseda-Berdices, Ana; Resino, Salvador; et al; Jimenez-Sousa, Maria Angeles. (19/19). 2022. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation FRONTIERS IN IMMUNOLOGY. ISSN 1664-3224.

Metabolomic changes after DAAs therapy are related to the improvement of cirrhosis and inflammation in HIV/HCV-coinfected patients.

4 Virseda-Berdices, Ana; Rojo, David; Martinez, Isidoro; et al; Jimenez-Sousa, Maria Angeles. (14/14). 2022. Metabolomic changes after DAAs therapy are related to the improvement of cirrhosis and inflammation in HIV/HCV-coinfected patients. BIOMEDICINE & PHARMACOTHERAPY. 147:112623. ISSN 1950-6007.

HCV Cure With Direct-Acting Antivirals Improves Liver and Immunological Markers in HIV/HCV-Coinfected Patients FRONTIERS IN IMMUNOLOGY.

7 Brochado-Kith, Oscar; Martinez, Isidoro; Berenguer, Juan; et al; Jiménez-Sousa, Maria Angeles (‡, AC); Resino, Salvador (‡, AC). (13/13). 2021. HCV Cure With Direct-Acting Antivirals Improves Liver and Immunological Markers in HIV/HCV-Coinfected Patients FRONTIERS IN IMMUNOLOGY. 12:723196. ISSN 1664-3224.

HCV eradication with DAAs differently affects HIV males and females: A whole miRNA sequencing characterization

2. Valle-Millares D; Brochado-Kith O; Gómez-Sanz A; et al;Fernández-Rodríguez A (AC). (17/17). 2021. HCV eradication with DAAs differently affects HIV males and females: a whole miRNA sequencing characterization Biomedicine and Pharmacotherapy. Elsevier.

DOI

Plasma miRNA profile at COVID-19 onset predicts severity status and mortality

3. Fernández-Pato A; Virseda-Berdices A; Resino S; et al; Fernández-Rodríguez A (AC). (20/20). 2022. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality Emerging Microbes and Infections. Taylor & Francis Online. ISSN 2222-1751.

DOI

Diagnostic Performance of the HCV Core Antigen Test To Identify Hepatitis C in HIV-Infected Patients: a Systematic Review and Meta-Analysis

4. Sepúlveda-Crespo D; Treviño-Nakoura A; Bellon JM; Jiménez-Sousa MA; Ryan P; Martínez I; Fernández-Rodríguez A (AC); Resino S. (7/8). 2022. Diagnostic Performance of the HCV Core Antigen Test To Identify Hepatitis C in HIV-Infected Patients: a Systematic Review and Meta-Analysis.Journal of clinical microbiology. pp.e0133122. ISSN 0095-1137.

DOI

Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation

6. Ceballos FC; Virseda-Berdices A; Resino S; et al; Jiménez-Sousa MÁ (AC). (19/19). 2022. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation.Frontiers in immunology. 13, pp.925558. WOS (78)

DOI

Novel genes and sex differences in COVID-19 severity

7. Cruz R; Almeida SD; Heredia ML; et al; Fernández-Rodríguez A; Carracedo Á. (51/168). 2022. Novel genes and sex differences in COVID-19 severity. Human molecular genetics. ISSN 0964-6906.

DOI

Different HCV Exposure Drives Specific miRNA Profile in PBMCs of HIV Patients

8. Valle-Millares D; Brochado-Kith O; Martín-Carbonero L; et al; Fernández-Rodríguez A (AC). (22/22). 2021. Different HCV exposure drives specific miRNA profile in PBMCs of HIV patients Biomedicines. MDPI. 9-11, pp.1627.

DOI

Are Reduced Levels of Coagulation Proteins Upon Admission Linked to COVID-19 Severity and Mortality?

9. Ceballos F; Ryan P; Blancas R; et al; Fernández-Rodríguez A (AC); Jiménez-Sousa MA. (19/20). 2021. Are Reduced Levels of Coagulation Proteins Upon Admission Linked to COVID-19 Severity and Mortality? Frontiers in Medicine. Frontiers. 8-718053.

DOI

Telomere Length Increase in HIV/HCV-Coinfected Patients with Cirrhosis after HCV Eradication with Direct-Acting Antivirals

12 . Molina-Carrión S; Brochado-Kith, Oscar; González-García J; et al; Angeles Jimenez-Sousa, Maria. (16/16). 2020. Telomere length increase in HIV/HCV-coinfected patients with cirrhosis after HCV eradication with direct acting antivirals. JOURNAL OF CLINICAL MEDICINE. MDPI. ISSN 2077-0383.

DOI

MicroRNA Profile of HCV Spontaneous Clarified Individuals, Denotes Previous HCV Infection

15. Brochado-Kith, Oscar; Gomez-Sanz, Alicia; Real LM; et al; Fernandez-Rodriguez, Amanda (AC). (16/16). 2019. MicroRNA Profile of HCV Spontaneous Clarified Individuals, Denotes Previous HCV Infection JOURNAL OF CLINICAL MEDICINE. MDPI. 7. ISSN 2077-0383.

DOI

​​Persistent Immunity against SARS-CoV-2 in Individuals with Oncohematological Diseases Who Underwent Autologous or Allogeneic Stem Cell Transplantation after Vaccination

​​Persistent Immunity against SARS-CoV-2 in Individuals with Oncohematological Diseases Who Underwent Autologous or Allogeneic Stem Cell Transplantation after Vaccination. Rodríguez-Mora S, Pérez-Lamas L, Solera Sainero M, Torres M, Sánchez-Menéndez C, Corona M, Mateos E, Casado-Fernández G, Alcamí J, García-Pérez J, Pérez-Olmeda M, Murciano-Antón A, López-Jiménez J, García-Gutiérrez V, Coiras M (AC). Cancers 2023, 15(8), 2344. doi: 10.3390/cancers15082344. PMID: 37190272.

PUBMED DOI

Sustained Cytotoxic Response of Peripheral Blood Mononuclear Cells from Unvaccinated Individuals Admitted to the ICU Due to Critical COVID-19 Is Essential to Avoid a Fatal Outcome

Sustained Cytotoxic Response of Peripheral Blood Mononuclear Cells from Unvaccinated Individuals Admitted to the ICU Due to Critical COVID-19 Is Essential to Avoid a Fatal Outcome. Casado-Fernández G, Corona M, Torres M, Saez AJ, Ramos-Martín F, Manzanares M, Vigón L, Mateos E, Pozo F, Casas I, García-Gutierrez V, Rodríguez-Mora S, Coiras M (AC). Int J Environ Res Public Health. 2023 Jan20;20(3):1947. doi: 10.3390/ijerph20031947. PMID: 36767310.

PUBMED DOI

Dasatinib: effects on the macrophage phospho proteome with a focus on SAMHD1 and HIV-1 infection

Dasatinib: effects on the macrophage phospho proteome with a focus on SAMHD1 and HIV-1 infection. Williams ESCP, Szaniawski MA, Martins LJ, Innis EA, Alcamí J, Hanley TM, Spivak AM, Coiras M, Planelles V. Clin Res HIV AIDS.2022;8(1):1053. https://pubmed.ncbi.nlm.nih.gov/36589263/. PMID: 36589263.

PUBMED

Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19

Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19. Rodríguez-Mora S, Corona M, Torres M, Casado-Fernández G, García-Pérez J, Ramos-Martín F, Vigón L, Manzanares M, Mateos E, Martín-Moro F, Zurdo-Castronuño A, Murciano-Antón MA, Alcamí J, Pérez-Olmeda M, López-Jiménez J, García-Gutiérrez V, Coiras M (AC). J Clin Med. 2022 May 16;11(10):2803. doi: 10.3390/jcm11102803. PMID: 35628927.

PUBMED DOI

Changes in the immune response against SARS-CoV-2 in individuals with severe COVID-19 treated with high dose of vitamin D

Changes in the immune response against SARS-CoV-2 in individuals with severe COVID-19 treated with high dose of vitamin D. Torres M, Casado G, Vigón L, Rodríguez-Mora S, Mateos E, Ramos-Martín F, López-Wolf D, Sanz-Moreno J, Ryan-Murua P, Taboada-Martínez ML, López-Huertas MR, Cervero M, Coiras M (AC). Biomed Pharmacother. 2022 Apr 14;150:112965. doi: 10.1016/j.biopha.2022.112965. PMID: 35468580.

PUBMED DOI

Strong Cellular Immune Response, but Not Humoral, against SARS-CoV-2 in Oncohematological Patients with Autologous Stem Cell Transplantation after Natural Infection.

Strong Cellular Immune Response, but Not Humoral, against SARS-CoV-2 in Oncohematological Patients with Autologous Stem Cell Transplantation after Natural Infection. Vigón L, Sánchez-Tornero A, Rodríguez-Mora S, García-Pérez J, Corona de Lapuerta M, Pérez-Lamas L, Casado-Fernández G, Moreno G, Torres M, Mateos E, Murciano-Antón MA, Alcamí J, Pérez-Olmeda M, López-Jiménez J, García-Gutiérrez V, Coiras M (AC). J Clin Med. 2022 Apr 11;11(8):2137. doi: 10.3390/jcm11082137. PMID: 35456230.

PUBMED DOI

Content with Investigacion Genética Bacteriana .

List of staff

Información adicional

Streptococcus pneumoniae is a human pathogen that, despite the development of vaccines, continues to be an important cause of mortality and morbidity. We investigate the mechanisms of antibiotic resistance in this bacterium. On the one hand by identifying new therapeutic targets and on the other hand by investigating the molecular basis of the action of antibiotics already used in clinical practice (the fluoroquinolones levofloxacin and moxifloxacin) or not yet used (seconeolitsine). For this purpose, we used a multidisciplinary analysis involving genomics, transcriptomics and proteomics to understand the organization of the S. pneumoniae chromosome and the identification of the factors that stabilize this organization, including ncRNAs. Changes in the level of global supercoiling, either by inhibition of gyrase (decrease) or by inhibition of topoisomerase I (increase) alter the transcriptome. The modulated genes are located in domains, whose genes show specific functional characteristics. The aim is to identify new factors essential for S. pneumoniae physiology and to characterize transcriptional regulation in response to topological stress. In addition, RNA interference technology and CRISPR systems will be used as novel antibacterials. These studies will establish the bases for translational research aimed at the development of new therapeutic targets for the treatment of pneumococcal diseases.

Streptococcus pneumoniae is a human pathogen that, despite the development of vaccines, continues to be an important cause of mortality and morbidity. We investigate the mechanisms of antibiotic resistance in this bacterium. On the one hand by identifying new therapeutic targets and on the other hand by investigating the molecular basis of the action of antibiotics already used in clinical practice (the fluoroquinolones levofloxacin and moxifloxacin) or not yet used (seconeolitsine). For this purpose, we used a multidisciplinary analysis involving genomics, transcriptomics and proteomics to understand the organization of the S. pneumoniae chromosome and the identification of the factors that stabilize this organization, including ncRNAs. Changes in the level of global supercoiling, either by inhibition of gyrase (decrease) or by inhibition of topoisomerase I (increase) alter the transcriptome. The modulated genes are located in domains, whose genes show specific functional characteristics. The aim is to identify new factors essential for S. pneumoniae physiology and to characterize transcriptional regulation in response to topological stress. In addition, RNA interference technology and CRISPR systems will be used as novel antibacterials. These studies will establish the bases for translational research aimed at the development of new therapeutic targets for the treatment of pneumococcal diseases.

Content with Investigacion Genética Bacteriana .