Logo del Gobierno de España Logo del Ministerio de Ciencia e Innovación, lleva a la web del ministerio Logo del ISCIII, lleva a la página principal de este sitio web Logo del CNM

Protegemos tu salud a través de la Ciencia

Investigación

Arbovirus y Enfermedades víricas importadas

Líneas de investigación

Contenidos con Investigacion Arbovirus y Enfermedades víricas importadas .

Arbovirus y Enfermedades víricas importadas

El grupo investiga el papel que los Arbovirus (virus transmitidos por artrópodos) y otros virus transmitidos por otros vectores y/o reservorios (VTVR) como roedores o murciélagos desempeñan en nuestro entorno. Nuestra investigación abarca desde el conocimiento sobre su presencia en nuestro medio hasta los mecanismos que les hacen más o menos patógenos aunque una parte importante de nuestra actividad está encaminada a conocer y/o desarrollar métodos diagnósticos para su detección y caracterización.  Virus como Chikungunya, Zika, Dengue, West Nile, Toscana o el productor de la Fiebre Hemorrágica de Crimea-Congo son algunos de los agentes con los que trabajamos.​

 

El laboratorio de Arbovirus y Enfermedades Víricas Importadas (AEVI) del CNM desarrolla su trabajo dentro de la línea de investigación “Virus emergentes transmitidos por vector y/o reservorio, de importancia en salud pública”, que se sustenta en las áreas de epidemiología molecular, desarrollo metodológico, detección en vectores y reservorios y, otros aspectos relacionados con estas zoonosis con una aplicación clara hacia la investigación, prevención, preparación, control y respuesta a las amenazas o brotes causados por  estos virus.
Arbovirus como Dengue, Chikungunya o Zika son virus endémicos en todo el cordón tropical/sub-tropical del planeta en continua expansión a latitudes más lejanas debido al calentamiento global y a la dispersión y colonización de nuevos hábitats llevada a cabo por sus vectores artrópodos y son transportados a otras zonas del planeta a través de pacientes virémicos por lo que si, como ocurre en España, se cuenta con vectores transmisores establecidos, se puede propiciar el establecimiento de circulación autóctona. Además de estos virus exóticos, en España circulan endémicamente los arbovirus Toscana, West Nile y el virus de la Fiebre hemorrágica de Crimea-Congo, entre otros.
La OMS elaboró un listado en 2019 con las 10 amenazas para la Salud Global que consideraron más importantes, entre las que se  encuentran los virus Dengue, Ébola y Zika. El principal temor es que la falta de preparación cause una epidemia. Además, algunos de estos virus como Dengue y Chikungunya son considerados también “Enfermedades Tropicales Desatendidas” que ponen en peligro la salud de muchas personas en países empobrecidos sin que se estudien con los recursos necesarios.


La importancia para la salud pública de estos patógenos, y la necesidad de prepararse frente a ellos, se refleja también en la lista de actividades prioritarias de investigación y desarrollo de la OMS que actualmente incluye, entre otros, el Ébola, el virus de la Fiebre Hemorrágica de Crimea Congo, el virus de Zika y la enfermedad por el virus de Nipah,  debido a la amenaza que suponen para la Salud Pública por su potencial epidémico o porque no hay medidas de control suficientes. Además del peligro real que representan en zonas endémicas, algunos de los virus mencionados (Ébola, Zika, West Nile, Crimea-Congo y Dengue) han supuesto, y continúan siendo, una amenaza para nuestro país habiendo producido casos esporádicos o brotes localizados de infección autóctona. El riesgo para España de las enfermedades transmitidas por vectores está aumentando de manera muy clara como se ha podido observar en los últimos años, y la previsión es que siga aumentando.
Todos estos virus son virus zoonóticos emergentes y nuestro grupo de investigación lleva décadas trabajando en diferentes aspectos en relación con estos patógenos. El riesgo de emergencia y expansión de estos virus se basa de sus ciclos complejos de transmisión, por lo que nuestros estudios se basan tanto en el ser humano, como en los reservorios y los vectores que los transmiten. De esta base, parten transversalmente las líneas de actuación que van enfocadas a estudios de epidemiología molecular, desarrollo metodológico, detección de virus en vectores y hospedadores, caracterización de los mismos y estudios de competencia vectorial, con una aplicación dirigida hacia la investigación, prevención y respuesta a las amenazas o brotes causados por estos virus. El trabajo que desarrollamos se articula en torno a 3 objetivos principales:

Objetivo 1. Búsqueda y caracterización de virus emergentes en vectores y/o reservorios. Se lleva a cabo mediante herramientas moleculares incluyendo las nuevas estrategias de NGS, de virus emergentes en vectores y reservorios. De los virus detectados se realiza una caracterización molecular y serológica, llevando a cabo estudios de epidemiología molecular y de relaciones genéticas y antigénicas con virus relacionados.

Objetivo 2. Desarrollo metodológico para detección, identificación y caracterización de virus emergentes. Los métodos desarrollados pueden transferirse al SNS, explotarse comercialmente y/o utilizarse en la Cartera de Servicios del CNM. Estos desarrollos moleculares, y/o serológicos, refuerzan al CNM en su papel como Laboratorio Nacional de Referencia de Zoonosis, con un aporte de herramientas útiles y necesarias para la detección y caracterización de estos agentes. De igual forma, el desarrollo de herramientas tipo flujo lateral, las denominadas “Point Of Care” es una de las necesidades que pretendemos dar solución.

Objetivo 3. Eco-epidemiología de viriasis emergentes.  Debido a los complejos ciclos biológicos de los arbovirus, el estudio de las especies de vectores implicados en nuestro país, así como el origen y evolución de los agentes circulantes, es crucial a la hora de entenderlos y responder a las amenazas que generan. Para ello estudiamos la presencia de estos virus tanto en muestras humanas como de vectores y posibles hospedadores, lo que nos permite, con un enfoque de “Una Salud”, entender los mecanismos que controlan su circulación y que puedan estar implicados en su patogenicidad.

Proyectos de investigación

Contenidos con Investigacion Arbovirus y Enfermedades víricas importadas .

​Concesión del Proyecto de la Convocatoria 2019 de RETOS-COLABORACIÓN: Desarrollo de kits diagnósticos mediante PCR multiplex en tiempo real en formato líquido y gelificado para la detección de enfermedades víricas y sepsis. RTC2019-007023-1 / MPY 292/20. IPs: Inmaculada Casas y Giovanni Fedele. 2020-2023. 442.653 €. Investigadoras colaboradoras: Mª Paz Sánchez-Seco, Ana Vázquez, Anabel Negredo.

 

Título del Proyecto: VIRUS DE LA FIEBRE HEMORRÁGICA DE CRIMEA-CONGO EN ESPAÑA: PAPEL DE LAS AVES MIGRATORIAS Y GARRAPATAS EN LA DIVERSIDAD VIRAL Y SUS EFECTOS EN LAS PRESENTACIONES CLÍNICAS EN EL HOMBRE
Entidad financiadora: ISCIII.     Expediente: PI21CIII/0001    Centro: CNM
Duración desde: 01/01/2022        hasta: 31/12/2024    
Investigador principal: Mª Paz Sánchez-Seco        Financiación: 171.190,84 €

Título del Proyecto: Development of New Technologies to Track Emerging Infectious Threats in Wildlife and the Environment (NEXTHREAT)
Entidad financiadora: Ministerio de Ciencia e Innovación. RETOS. PLAN ESTATAL DE INVESTIGACIÓN CIENTÍFICA Y TÉCNICA Y DE INNOVACIÓN 2017-2020.     Expediente: PLEC2021- 007968.    Centro: ISCIII
Duración desde: 20/12/2021        hasta:     20/12/2024
Investigador principal: Ana Vázquez         Financiación: 301.191 €

Título del Proyecto: Measuring the real impact of West Nile virus infection in Spain
Entidad financiadora: Convocatoria Intramural de Proyectos de Investigación 2022 pertenecientes a CIBERESP.   Expediente: ESP22PI05/2022  Centro: ISCIII
Duración desde: 01/05/2022        hasta:     01/05/2024
Investigador principal: Ana Vázquez         Financiación: 48.000 €

Título del Proyecto: Microsoft Premonition
Entidad financiadora: ISCIII.   Expediente: MPY241-22   Centro: ISCIII
Duración desde: 01/07/2022        hasta:     30/06/2024
Investigador principal: Ana Vázquez         Financiación: 160.000 €

Título del Proyecto: CIBER (Centro de Investigación Biomédica En Red) de Enfermedades Infecciosas (CIBERINFEC). CB21/13/00110.
Entidad financiadora: Instituto de Salud Carlos III. Centro: CNM, ISCIII
Duración desde: 01/01/2022        hasta:     
Investigador principal: Mª Paz Sánchez-Seco        Financiación: 60.000 €/año

Título del Proyecto: Acción Estratégica Monkeypox
Entidad financiadora: CIBER (Centro de Investigación Biomédica En Red) de Enfermedades Infecciosas (CIBERINFEC). Instituto de Salud Carlos III. Centro: Multicéntrico
Duración desde: 01/09/2022        hasta: 15/04/2023    
Investigador principal: Mª Paz Sánchez-Seco        Financiación: 214.000 €

Título del Proyecto: INVESTIGACION Y VIGILANCIA INTEGRADA DE LOS ARBOVIRUS EMERGENTES WEST NILE, TOSCANA Y DENGUE EN ALGUNAS ZONAS DE ESPAÑA
Entidad financiadora: ISCIII         Expediente: PI19CIII/00014    Centro: ISCIII
Duración desde: 01/01/2020        hasta:     01/01/2022
Investigador principal: Ana Vázquez        Financiación: 122.000 €

Título del Proyecto: RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN ENFERMEDADES TROPICALES
Entidad financiadora: ISCIII    Expediente: RD16CIII/0003/0003.  Centro: ISCIII
Duración desde: 2017        hasta:     2021
Investigador principal: Mª Paz Sánchez-Seco        Financiación: 195.000 €

Título del Proyecto: INVESTIGACIÓN APLICADA AL DIAGNÓSTICO Y TRATAMIENTO DE LOS VIRUS ZIKA, DENGUE Y CHIKUNGUNYA
Entidad financiadora: ISCIII         Expediente: PI16CIII/00037   Centro: ISCIII
Duración desde: 01/01/2017        hasta:     31/12/2020 (Incluida prórroga de un año)
Investigador principal: Mª Paz Sánchez-Seco        Financiación: 145.000 €

Título del Proyecto: SHARP: Strengthened International HeAlth Regulations and Preparedness in the EU
Entidad financiadora: UE        Centro: ISCIII
Duración desde: 01/10/2019        hasta:     01/10/2020
Investigador principal: Mª Paz Sánchez-Seco    Financiación: 22.000 €

Publicaciones destacadas

Ordenar
Categoría

Suppression of CD4+ T lymphocyte activation in vitro and experimental encephalomyelitis in vivo by the phosphatidyl inositol 3-kinase inhibitor PIK-75.

3. Acosta YY, Montes-Casado M, Aragoneses-Fenoll L, Dianzani U, Portoles P, Rojo JM. Suppression of CD4+ T lymphocyte activation in vitro and experimental encephalomyelitis in vivo by the phosphatidyl inositol 3-kinase inhibitor PIK-75. Int. J. Immunopathol. Pharmacol. 2014 Jan-Mar;27(1):53-67.

PUBMED DOI

ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis.

2. Aragoneses-Fenoll L, Montes-CasadoM, Ojeda G, Acosta YY, Herranz J, Martínez S, Blanco-Aparicio C, Criado G, Pastor J, Dianzani U, Portolés P, Rojo JM. ETP-46321, a dual p110α/δ class IA phosphoinositide 3-kinase inhibitor modulates T lymphocyte activation and collagen-induced arthritis. Biochem. Pharmacol. 2016 Apr 15;106:56-69. Epub 2016 Feb 13.

PUBMED DOI

Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278)

6. Y. Acosta, G. Ojeda, M. P. Zafra, I. Seren-Bernardone, A. Sánchez, U. Dianzani, P. Portolés y J. M. Rojo. Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278). Inmunología, 2012, 31 (1): 4-12.

DOI

Complement regulatory protein Crry/p65 costimulation expands natural Treg cells with enhanced suppressive properties in proteoglycan-induced arthritis.

7. Ojeda G., Pini E., Eguiluz C., Montes-Casado M., Broere F., van Eden W., Rojo J.M., and Portolés P. Complement regulatory protein Crry/p65 costimulation expands natural Treg cells with enhanced suppressive properties in proteoglycan-induced arthritis. Arthritis Rheum. 2011 Jun;63(6):1562-72.

PUBMED DOI

Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278)

8. Acosta Y.Y., Zafra M.P., Ojeda G., Bernardone I.S., Dianzani U., Portolés P., Rojo J.M. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell. Mol. Life Sci. 2011 Sep;68(18):3065-79.

PUBMED DOI

Pneumoviridae fusion proteins as immunogens to induce cross-neutralizing antibody responses

Olmedillas E, Cano O, Martinez I, Luque D, Terron MC, McLellan JS, et al. Chimeric Pneumoviridae fusion proteins as immunogens to induce cross-neutralizing antibody responses. EMBO Mol Med. 2018;10(2):175-87.

PUBMED DOI

Spatially-restricted JAG1-Notch signaling in the human thymus provides permissive microenvironments for dendritic cell development.

Martín Gayo, E., González-García, S., García-León, M., Murcia-Ceballos, A., Alcain, J., García-Peydró, M., Allende, L., de Andrés, B., Gaspar, ML. and Toribio, ML. J.Exp.Med. (2017) 214:3361-3379

PUBMED DOI

Altered Marginal Zone and innate-like B cells in aged SAMP8 mice with defective IgG1 responses

Cortegano, I., Rodriguez, M., Martin, I., Prado, C., Ruiz, C., Hortigüela, R., Alia, M., Vilar, M., Mira, H., Cano, E., de Andrés, B., and Gaspar, ML. Cell death & disease (2017) 8, e3000

PUBMED DOI

Role of Toll-like receptor 4 in intravascular hemolisis-mediated injury

Vázquez-Carballo C, Herencia C, Guerrero-Hue M, García-Caballero C, Rayego-Mateos S, Morgado-Pascual JL, Opazo-Rios L, González-Guerrero C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno JA. J Pathol. 2022 Nov; 258(3): 236–249.

PUBMED DOI

TREM1 regulates antifungal immune responses in invasive pulmonary aspergillosis

Bernal-Martinez L, Gonçalves S, de Andres B, Cunha C, Gonzalez Jimenez I, Lagrou K, Mellado E, Gaspar ML, Maertens J, Carvalho A, and Alcazar-Fuoli L. Virulence 2021 Dec;12(1):570-583.

PUBMED DOI

Nrf2 plays a protective role against intravascular hemolysis-mediated acute kidney injury.

Rubio-Navarro A, Vázquez-Carballo C, Guerrero-Hue M, García-Caballero C, Herencia C, Gutierrez E, Yuste C, Sevillano A, Praga M, Egea J, Cannata P, Cortegano I, de Andrés B, Gaspar ML, Cadenas S, Michalska P, León R, Ortiz, A, Egido J, Moreno JA. Front Pharmacol. 2019; 10: 740.

PUBMED DOI

Tyrosine kinase 2 modulates splenic B cells through type I IFN and TLR7 signaling.

Bodega-Mayor I, Delgado-Wicke P, Arrabal A, Alegría-Carrasco E, Nicolao-Gómez A, Jaén-Castaño M, Espadas C, Dopazo A, Martín-Gayo E, Gaspar ML, de Andrés B, Fernández-Ruiz E. Cell Mol Life Sci. 2024 Apr 29;81(1):199.

PUBMED DOI

Immune stress suppresses innate immune signaling in preleukemic precursor B-cells to provoke leukemia in predisposed mice

Isidro-Hernández M, Casado-García A, Oak N, Alemán-Arteaga S, Ruiz-Corzo B, Martínez-Cano J, Mayado A, G. Sánchez E, Blanco O, Gaspar ML, Orfao A, Alonso-López D, De las Rivas J, Riesco S, Prieto-Matos P, González-Murilo A, García Criado FJ, García Cenador MB, Ramírez-Orellana M, De Andrés B, Vicente-Dueñas C, Cobaleda C, Nichols KE, Sánchez-García I. Nat Commun 2023 Aug 24;14(1):5159.

PUBMED DOI

Age-dependent nasal immune responses in non-hospitalized bronchiolitis children

Cortegano I, Rodríguez M, Hernángómez S, Arrabal A, Garcia-Vao C, Rodríguez J, Sandra Fernández S, Díaz J, de la Rosa B, Solís B, Arribas C, Garrido F, Zaballos A, Roa S, López V, Gaspar ML, de Andrés B. Front Immunol 2022 Dec 6:13:1011607.

PUBMED DOI

Toll-like receptors in acute kidney injury

Vázquez-Carballo C, Guerrero-Hue M, García Caballero C, Rayego-Mateos S, Opazo-Rios L, Morgado-Pascual JL, Herencia-Bellido C, Vallejo-Mudarra M, Cortegano I, Gaspar ML, de Andrés B, Egido J, Moreno-Gutiérrez JA. Int J Mol Sci. 2021 Jan; 22(2): 816.

PUBMED DOI

ICOS deficiency hampers the homeostasis, development and activity of NK cell

Montes-Casado M, Ojeda G, Aragoneses-Fenoll L, López D, de Andrés B, Gaspar ML, Dianzani U, Rojo JM, Portolés P. PLoS One 2019 Jul 8;14(7):e0219449.

PUBMED DOI

The TLR4-MyD88 Signaling Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae

Sánchez-Tarjuelo R, Cortegano I, Manosalva J, Rodríguez M, Ruiz C, Alía M, Prado MC, Cano EM, Ferrándiz MJ, de la Campa A, Gaspar ML, de Andrés B. Front Immunol 2020 Sep 16:11:2120.

PUBMED DOI

Toll-like receptor signaling-deficient cells enhance antitumor activity of cell-based immunotherapy by increasing tumor homing

A. Morales-Molina, M.A. Rodríguez-Milla, S,. Gambera, T. Cejalvo, B. de Andrés M.L. Gaspar, J. Garcia-Castro. Cancer Res Commun 2023 Mar 1;3(3):347-360. eCollection 2023 Mar

PUBMED DOI

Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation

Fernández A, Quintana E, Velasco P, Moreno-Jimenez B, de Andrés B, Gaspar ML, Liste I, Vilar M, Mira E, Cano E. J Neuroinflammation 2021 Mar 18;18(1):75.

PUBMED DOI

Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance

Braza MS, Conde P, García M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, Mulder WJM, Ochando J. Am J Transplant 2018 May;18(5):1247-1255.

PUBMED DOI

CD45 expression discriminates waves of embryonic megakaryocytes in the mouse.

Cortegano, I., Serrano, N., Ruiz, C., Rodríguez, M., Prado, C., Alía, M., Hidalgo, A., Cano, E., de Andrés B. and Gaspar, ML. 2018. Haematologica, 104(9):1853-1865

PUBMED DOI

Podocytes as new cellular targets of hemoglobin toxicity in massive intravascular hemolysis.

Rubio-Navarro A, Sanchez-Niño MD, Guerrero-Hue M, García-Caballero C, Gutiérrez E, Yuste C, Sevillano A, Praga M, Egea J, Román E, Cannata P, Ortega R, Cortegano I, de Andrés B, Gaspar ML, Cadenas S, Ortiz A, Egido J, Moreno JA. Podocytes as new cellular targets of hemoglobin toxicity in massive intravascular hemolysis. 2018. J.Pathol. 244(3):296-310.

PUBMED DOI

DNGR-1+ dendritic cells are located in meningeal and choroid plexus membranes of the non-injured brain.

Quintana, E., Fernández. A, de Andrés, B., Liste, I., Sancho, D., Gaspar, ML. and Cano, E. Glia (2015) 62 (12):2231-2248

PUBMED DOI

Role of PatAB transporter in efflux of levofloxacin in Streptococcus pneumoniae

Amblar M, Zaballos A, de la Campa AG. Antibiotics. 2022; 17:1837.

PUBMED DOI

HU of Streptococcus pneumoniae is essential for the preservation of DNA supercoiling

Ferrándiz MJ, Carreño D, Ayora S, de la Campa AG. Front Microbiol. 9:493 (2018).

PUBMED DOI

StaR Is a positive regulator of topoisomerase I activity involved in supercoiling maintenance in Streptococcus pneumoniae

de Vasconcelos Junior AA, Tirado-Vélez JM, Martín-Galiano AJ, Megias D, Ferrándiz MJ, Hernández P, Amblar M, de la Campa AG. Int J Mol Sci. 2023; 24:5973.

PUBMED DOI

Genome-wide proximity between RNA polymerase and DNA topoisomerase I supports transcription in Streptococcus pneumoniae

Ferrándiz M-J, Hernández P, de la Campa AG. PLoS Genet. 2021; 17:e1009542.

PUBMED DOI

Reactive oxygen species production is a major factor directing the post-antibiotic effect of fluoroquinolones in Streptococcus pneumoniae

García MT, Valenzuela MV, Ferrándiz MJ, de la Campa AG. Antimicrob Agents Chemother. 2019; 63:e00737-19.

PUBMED DOI

The balance between gyrase and topoisomerase I activities determines levels of supercoiling, nucleoid compaction, and viability in bacteria

García-López M, Megias D, Ferrándiz MJ, de la Campa AG. Front Microbiol. 2023; 11;1094692.

PUBMED DOI

Physiologic and transcriptomic effects triggered by overexpression of wild type and mutant DNA topoisomerase I in Streptococcus pneumoniae

García-López M, Hernández P, Megias D, Ferrándiz MJ, de la Campa AG. Int J Mol Sci. 2023; 24:15800.

PUBMED DOI

Seconeolitsine, the novel inhibitor of DNA topoisomerase I, protects against invasive pneumococcal disease caused by fluoroquinolone-resistant strains.

Tirado-Vélez JM, Carreño D, Sevillano D, Alou L, Yuste J, de la Campa AG. Antibiotics 2021; 10:573.

PUBMED DOI

A Small Non-Coding RNA Modulates Expression of Pilus-1 Type in Streptococcus pneumoniae

Acebo P, Herranz C, Bernal-Espenberger L, Gómez-Sanz A, Terron MC, Luque D and Amblar M. Microorganisms. 2021; 9:1883.

PUBMED DOI

Boldine-derived alkaloids inhibit the activity of DNA topoisomerase I and growth of Mycobacterium tuberculosis.

García MT, Carreño D, Tirado-Vélez JM, Ferrándiz MJ, Rodrigues L, Gracia B, Amblar M, Ainsa JA*, de la Campa AG. Front Microbiol. 9:493 (2018).

PUBMED DOI

Bridging chromosomal architecture and pathophysiology of Streptococcus pneumoniae

Martín-Galiano AJ, Ferrándiz MJ, de la Campa AG. Genome Biol Evol. 2017; 9:350-361.

PUBMED DOI

An increase in negative supercoiling in bacteria reveals topology-reacting gene clusters and a homeostatic response mediated by the DNA topoisomerase I gene

Ferrándiz MJ, Martín-Galiano AJ, Arnanz C, Camacho-Soguero I, Tirado-Vélez JM, de la Campa AG. 2016. Nucl Acids Res. 44:7292-7303 (2016).

PUBMED DOI

Reactive oxygen species contribute to the bactericidal effects of the fluoroquinolone moxifloxacin in Streptococcus pneumoniae

Ferrándiz MJ, Martín-Galiano AJ, Arnanz C, Zimmerman T, de la Campa AG. Antimicrob Agents Chemother. 60:409-417 (2016).

PUBMED DOI

The fluoroquinolone levofloxacin triggers the transcriptional activation of iron transport genes that contribute to cell death in Streptococcus pneumoniae.

Ferrándiz MJ, de la Campa AG. Antimicrob Agents Chemother. 58:247-257 (2014)

PUBMED DOI

Fluoroquinolone-resistant pneumococci: dynamics of serotypes and clones in Spain in 2012 compared with those from 2002 and 2006

Domenech A, Tirado-Vélez JM, Fenoll A, Ardanuy C, Yuste J, Liñares J, de la Campa AG. Antimicrob Agents Chemother. 58:2393-2399 (2014).

PUBMED DOI

Absence of tmRNA has a protective effect against fluoroquinolones in Streptococcus pneumoniae

Brito L, Wilton J, Ferrándiz MJ, Gómez-Sanz A, de la Campa AG, Amblar M. Front. Microbiol. 7:2164 (2017).

PUBMED DOI

Upregulation of the PatAB transporter confers fluoroquinolone resistance to Streptococcus pseudopneumoniae

Alvarado M, Martín-Galiano AJ, Ferrándiz MJ, Zaballos A, de la Campa AG. Front Microbiol. 8:2074 (2017).

PUBMED DOI

Contenidos con Investigacion Arbovirus y Enfermedades víricas importadas .

Listado de personal

Información adicional

Nuestros objetivos son la investigación en virus autóctonos bien establecidos (Toscana, West Nile y Linfocoriomeningitis), importados con vector en España (Zika, Dengue y Chikungunya, principalmente), y virus productores de fiebres hemorrágicas (como Ebola, Lassa o Crimea Congo que a pesar de ser autóctono, englobamos en esta categoría) sin olvidar otros virus que, en cualquier momento, pueden convertirse en virus emergentes y causar alertas de Salud Pública.

El grupo tiene como principal objetivo de investigación identificar y caracterizar los virus mencionados que causan enfermedad y los que circulan en nuestro entorno con potencial patogénico.

Uno de los objetivos transversales del laboratorio consiste en la optimización de los métodos para la detección de estos virus y su aplicación para determinar incidencia, prevalencia y/o presencia de los virus en nuestro entorno.

Pero, además del desarrollo metodológico, es importante conocer el origen de los virus circulantes, sus relaciones antigénicas con virus relacionados, la patogenicidad de los diferentes aislados o las interacciones de los agentes con su huésped tanto en cultivo celular como en artrópodos vectores cuando esto resulta posible. Se intenta así, a través de la investigación, fortalecer nuestro papel como Laboratorio Nacional de Referencia para zoonosis.

Nuestros objetivos son la investigación en virus autóctonos bien establecidos (Toscana, West Nile y Linfocoriomeningitis), importados con vector en España (Zika, Dengue y Chikungunya, principalmente), y virus productores de fiebres hemorrágicas (como Ebola, Lassa o Crimea Congo que a pesar de ser autóctono, englobamos en esta categoría) sin olvidar otros virus que, en cualquier momento, pueden convertirse en virus emergentes y causar alertas de Salud Pública.

El grupo tiene como principal objetivo de investigación identificar y caracterizar los virus mencionados que causan enfermedad y los que circulan en nuestro entorno con potencial patogénico.

Uno de los objetivos transversales del laboratorio consiste en la optimización de los métodos para la detección de estos virus y su aplicación para determinar incidencia, prevalencia y/o presencia de los virus en nuestro entorno.

Pero, además del desarrollo metodológico, es importante conocer el origen de los virus circulantes, sus relaciones antigénicas con virus relacionados, la patogenicidad de los diferentes aislados o las interacciones de los agentes con su huésped tanto en cultivo celular como en artrópodos vectores cuando esto resulta posible. Se intenta así, a través de la investigación, fortalecer nuestro papel como Laboratorio Nacional de Referencia para zoonosis.

Contenidos con Investigacion Arbovirus y Enfermedades víricas importadas .